Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks

被引:3
作者
Bo, Hongbo [1 ]
McConville, Ryan [2 ]
Hong, Jun [3 ]
Liu, Weiru [2 ]
机构
[1] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
[2] Univ Bristol, Dept Engn Math, Bristol, Avon, England
[3] Univ West England, Dept Comp Sci & Creat Technol, Bristol, Avon, England
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
关键词
graph neural networks; social network analysis; social influence analysis; augmentation;
D O I
10.1109/IJCNN52387.2021.9533437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation has been widely used in machine learning for natural language processing and computer vision tasks to improve model performance. However, little research has studied data augmentation on graph neural networks, particularly using augmentation at both train- and test-time. Inspired by the success of augmentation in other domains, we have designed a method for social influence prediction using graph neural networks with train- and test-time augmentation, which can effectively generate multiple augmented graphs for social networks by utilising a variational graph autoencoder in both scenarios. We have evaluated the performance of our method on predicting user influence on multiple social network datasets. Our experimental results show that our end-to-end approach, which jointly trains a graph autoencoder and social influence behaviour classification network, can outperform state-of-the-art approaches, demonstrating the effectiveness of train- and test-time augmentation on graph neural networks for social influence prediction. We observe that this is particularly effective on smaller graphs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Social Recommendation based on Graph Neural Networks
    Sun, Hongji
    Lin, Lili
    Chen, Riqing
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 489 - 496
  • [22] Temporal Graph Neural Networks for Social Recommendation
    Bai, Ting
    Zhang, Youjie
    Wu, Bin
    Nie, Jian-Yun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 898 - 903
  • [23] Graph Attention Networks for Neural Social Recommendation
    Mu, Nan
    Zha, Daren
    He, Yuanye
    Tang, Zhihao
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1320 - 1327
  • [24] Recurrent neural networks integrate multiple graph operators for spatial time series prediction
    Bo Peng
    Yuanming Ding
    Qingyu Xia
    Yang Yang
    Applied Intelligence, 2023, 53 : 26067 - 26078
  • [25] Recurrent neural networks integrate multiple graph operators for spatial time series prediction
    Peng, Bo
    Ding, Yuanming
    Xia, Qingyu
    Yang, Yang
    APPLIED INTELLIGENCE, 2023, 53 (21) : 26067 - 26078
  • [26] Harnessing collective structure knowledge in data augmentation for graph neural networks
    Ma, Rongrong
    Pang, Guansong
    Chen, Ling
    NEURAL NETWORKS, 2024, 180
  • [27] Multi-strategy adaptive data augmentation for Graph Neural Networks
    Juan, Xin
    Liang, Xiao
    Xue, Haotian
    Wang, Xin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [28] Balancing Augmentation With Edge Utility Filter for Signed Graph Neural Networks
    Chen, Ke-Jia
    Ji, Yaming
    Mu, Wenhui
    Qu, Youran
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5903 - 5915
  • [29] LeDA-GNN: Learnable dual augmentation for graph neural networks
    Liu, Gen
    Zhao, Zhongying
    Li, Chao
    Yu, Yanwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [30] Graph Neural Networks for Metrics Prediction in Microservice Architecture
    Golovkina, Anna
    Mogilnikov, Dmitry
    Ruzhnikov, Vladimir
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2024 WORKSHOPS, PT VII, 2024, 14821 : 343 - 357