Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method

被引:56
作者
Arnous, Ahmed H. [1 ]
Biswas, Anjan [3 ,4 ,5 ,6 ,7 ]
Yildirim, Yakup [8 ]
Zhou, Qin [2 ]
Liu, Wenjun [9 ,10 ]
Alshomrani, Ali S.
Alshehri, Hashim M. [4 ]
机构
[1] Higher Inst Engn, Dept Phys & Engn Math, Cairo, Egypt
[2] Wuhan Text Univ, Res Ctr Nonlinear Sci, Sch Math & Phys Sci, Wuhan 430200, Peoples R China
[3] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[4] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[7] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[8] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[9] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[10] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
关键词
Solitons; Kudryashov; Ginzburg-Landau; Constraints; 1ST INTEGRAL METHOD; SPATIOTEMPORAL DISPERSION; BRIGHT; DARK; FIBERS;
D O I
10.1016/j.chaos.2021.111748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper implements the enhanced Kudryashov's method to address cubic-quartic complex Ginzburg- Landau equation for locating its solitons. This is considered when chromatic dispersion is discarded because of its low count. Sis forms of self-phase modulation structures are studied and they are Kerr law, parabolic law, polynomial law, quadratic-cubic law, anti-cubic law and parabolic-nonlocal law. Thus, bright and singular solitons are recovered for this model. The existence criteria for such solitons have been indicated, as well.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 35 条
  • [21] Analytic study on interactions between periodic solitons with controllable parameters
    Liu, Xiaoyan
    Triki, Houria
    Zhou, Qin
    Liu, Wenjun
    Biswas, Anjan
    [J]. NONLINEAR DYNAMICS, 2018, 94 (01) : 703 - 709
  • [22] Optical Solitons and Vortices in Fractional Media: A Mini-Review of Recent Results
    Malomed, Boris A.
    [J]. PHOTONICS, 2021, 8 (09)
  • [23] Dark optical solitons of Biswas-Milovic equation with dual-power law nonlinearity
    Mirzazadeh, M.
    Eslami, M.
    Arnous, Ahmed Hassan
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (01):
  • [24] TEMPORAL SOLITONS OF MODIFIED COMPLEX GINZBURG LANDAU EQUATION
    Shwetanshumala, S.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 3 : 17 - 24
  • [25] Embedded solitons in second-harmonic-generating lattices
    Susanto, Hadi
    Malomed, Boris A.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 142
  • [26] Triki H, 2012, ROM REP PHYS, V64, P367
  • [27] Riemann-Hilbert approach and nonlinear dynamics of the coupled higher-order nonlinear Schrodinger equation in the birefringent or two-mode fiber
    Wei, Han-Yu
    Fan, En-Gui
    Guo, Han-Dong
    [J]. NONLINEAR DYNAMICS, 2021, 104 (01) : 649 - 660
  • [28] Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg-Landau Equation Having a Dozen Nonlinear Refractive Index Structures
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Biswas, Anjan
    Ekici, Mehmet
    Khan, Salam
    Alshomrani, Ali Saleh
    [J]. JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (05) : 481 - 544
  • [29] Cubic-quartic optical soliton perturbation in polarization-preserving fibers with complex Ginzburg-Landau equation having five nonlinear refractive index structures
    Zayed, Elsayed M. E.
    Nofal, Taher A.
    Alngar, Mohamed E. M.
    El-Horbaty, Mahmoud M.
    [J]. OPTIK, 2021, 231
  • [30] Solitons in spin-orbit-coupled systems with fractional spatial derivatives
    Zeng, Liangwei
    Belic, Milivoj R.
    Mihalache, Dumitru
    Wang, Qing
    Chen, Junbo
    Shi, Jincheng
    Cai, Yi
    Lu, Xiaowei
    Li, Jingzhen
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 152