Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method

被引:56
作者
Arnous, Ahmed H. [1 ]
Biswas, Anjan [3 ,4 ,5 ,6 ,7 ]
Yildirim, Yakup [8 ]
Zhou, Qin [2 ]
Liu, Wenjun [9 ,10 ]
Alshomrani, Ali S.
Alshehri, Hashim M. [4 ]
机构
[1] Higher Inst Engn, Dept Phys & Engn Math, Cairo, Egypt
[2] Wuhan Text Univ, Res Ctr Nonlinear Sci, Sch Math & Phys Sci, Wuhan 430200, Peoples R China
[3] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[4] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[7] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[8] Near East Univ, Fac Arts & Sci, Dept Math, CY-99138 Nicosia, Cyprus
[9] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[10] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
关键词
Solitons; Kudryashov; Ginzburg-Landau; Constraints; 1ST INTEGRAL METHOD; SPATIOTEMPORAL DISPERSION; BRIGHT; DARK; FIBERS;
D O I
10.1016/j.chaos.2021.111748
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper implements the enhanced Kudryashov's method to address cubic-quartic complex Ginzburg- Landau equation for locating its solitons. This is considered when chromatic dispersion is discarded because of its low count. Sis forms of self-phase modulation structures are studied and they are Kerr law, parabolic law, polynomial law, quadratic-cubic law, anti-cubic law and parabolic-nonlocal law. Thus, bright and singular solitons are recovered for this model. The existence criteria for such solitons have been indicated, as well.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 35 条
  • [1] Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation
    Akram, Ghazala
    Mahak, Nadia
    [J]. OPTIK, 2018, 164 : 210 - 217
  • [2] Optical solitons with complex Ginzburg-Landau equation by modified simple equation method
    Arnous, Ahmed H.
    Seadawy, Aly R.
    Alqahtani, Rubayyi T.
    Biswas, Anjan
    [J]. OPTIK, 2017, 144 : 475 - 480
  • [3] Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media
    Arshed, Saima
    [J]. OPTIK, 2018, 160 : 322 - 332
  • [4] Chirped optical Gausson perturbation with quadratic-cubic nonlinearity by collective variables
    Asma, Mir
    Othman, W. A. M.
    Wong, B. R.
    Biswas, Anjan
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (06)
  • [5] Bright and dark Thirring optical solitons with improved adomian decomposition method
    Bakodah, H. O.
    Al Qarni, A. A.
    Banaja, M. A.
    Zhou, Qin
    Moshokoa, Seithuti P.
    Biswas, Anjan
    [J]. OPTIK, 2017, 130 : 1115 - 1123
  • [6] Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation
    Bansal, Anupma
    Kara, A. H.
    Biswas, Anjan
    Moshokoa, Seithuti R.
    Belic, Milivoj
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 114 : 275 - 280
  • [7] Gabitov-Turitsyn equation for solitons in optical fibers
    Biswas, A
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2003, 12 (01) : 17 - 37
  • [8] TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY
    Biswas, A.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 96 : 1 - 7
  • [9] Biswas A, J APPL SCI ENG, V24, P937
  • [10] Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons