Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

被引:77
|
作者
Xia, Bing [1 ,2 ]
Zhao, Xin [3 ]
de Callafon, Raymond [3 ]
Garnier, Hugues [4 ,5 ]
Truong Nguyen [2 ]
Mi, Chris [1 ]
机构
[1] San Diego State Univ, Dept Elect & Comp Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Lorraine, CRAN, UMR 7039, 2 Rue Jean Lamour, F-54519 Vandoeuvre Les Nancy, France
[5] CNRS, CRAN, UMR 7039, F-75700 Paris, France
关键词
Lithium-ion battery; Equivalent circuit model; Battery management system; Continuous-time system identification; Instrumental variable; EQUIVALENT-CIRCUIT MODELS; CHARGE ESTIMATION; ELECTRIC VEHICLES; STATE ESTIMATION; PACK;
D O I
10.1016/j.apenergy.2016.07.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2nd-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [21] Parameter estimation of an electrochemistry-based lithium-ion battery model
    Masoudi, Ramin
    Uchida, Thomas
    McPhee, John
    JOURNAL OF POWER SOURCES, 2015, 291 : 215 - 224
  • [22] Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model
    Bizeray, Adrien M.
    Kim, Jin-Ho
    Duncan, Stephen R.
    Howey, David A.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (05) : 1862 - 1877
  • [23] Lithium-ion Battery Electrothermal Model, Parameter Estimation, and Simulation Environment
    Orcioni, Simone
    Buccolini, Luca
    Ricci, Adriana
    Conti, Massimo
    ENERGIES, 2017, 10 (03)
  • [24] Parameter identification and state estimation for continuous-time nonlinear systems
    Floret-Pontet, F
    Lamnabhi-Lagarrigue, F
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 394 - 399
  • [25] A New Cascaded Framework for Lithium-Ion Battery State and Parameter Estimation
    Meng, Jianwen
    Boukhnifer, Moussa
    Diallo, Demba
    Wang, Tianzhen
    APPLIED SCIENCES-BASEL, 2020, 10 (03):
  • [26] Online Parameter Estimation/Tracking for Lithium-ion Battery RC Model
    Cen, Zhaohui
    Kubiak, Pierre
    Belharouak, Ilias
    PROCEEDINGS OF 2016 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 16), 2016, : 936 - 940
  • [27] Parameter Identification and Optimization for Lithium-Ion Battery State of Health Detection
    Sahay, Rahul
    Raghavan, Nagarajan
    2024 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM 2024, 2024, : 356 - 366
  • [28] State-of-charge estimation of the lithium-ion battery system with time-varying parameter for hybrid electric vehicles
    Zhang, Yun
    Zhang, Chenghui
    Zhang, Xianfu
    IET CONTROL THEORY AND APPLICATIONS, 2014, 8 (03): : 160 - 167
  • [29] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [30] Data pieces-based parameter identification for lithium-ion battery
    Gao, Wei
    Zou, Yuan
    Sun, Fengchun
    Hu, Xiaosong
    Yu, Yang
    Feng, Sen
    JOURNAL OF POWER SOURCES, 2016, 328 : 174 - 184