Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods

被引:77
|
作者
Xia, Bing [1 ,2 ]
Zhao, Xin [3 ]
de Callafon, Raymond [3 ]
Garnier, Hugues [4 ,5 ]
Truong Nguyen [2 ]
Mi, Chris [1 ]
机构
[1] San Diego State Univ, Dept Elect & Comp Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Lorraine, CRAN, UMR 7039, 2 Rue Jean Lamour, F-54519 Vandoeuvre Les Nancy, France
[5] CNRS, CRAN, UMR 7039, F-75700 Paris, France
关键词
Lithium-ion battery; Equivalent circuit model; Battery management system; Continuous-time system identification; Instrumental variable; EQUIVALENT-CIRCUIT MODELS; CHARGE ESTIMATION; ELECTRIC VEHICLES; STATE ESTIMATION; PACK;
D O I
10.1016/j.apenergy.2016.07.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2nd-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [1] Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
    Xia, Bing
    Zhao, Xin
    de Callafon, Raymond
    Garnier, Hugues
    Truong Nguyen
    Mi, Chris
    2016 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2016,
  • [2] Lithium-Ion Battery Thermal Parameter Identification and Core Temperature Estimation
    Saqli, Khadija
    Bouchareb, Houda
    Oudghiri, Mohammed
    M'sirdi, Nacer Kouider
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2023, 26 (04):
  • [3] Parameter and derivative estimation for nonlinear continuous-time system identification
    Niethammer, M
    Menold, PH
    Allgöwer, F
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 663 - 668
  • [4] Online Parameter Identification for Lithium-ion Cell in Battery Management System
    Wang, Tiansi
    Pei, Lei
    Lu, Rengui
    Zhu, Chunbo
    Wu, Guoliang
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,
  • [5] Online Parameter Identification of the Lithium-Ion Battery with Refined Instrumental Variable Estimation
    Wen, An
    Meng, Jinhao
    Peng, Jichang
    Cai, Lei
    Xiao, Qian
    COMPLEXITY, 2020, 2020
  • [6] Parameter identification and SOC estimation of lithium-ion battery based on AGCOA optimization
    Chu, Yunkun
    Li, Junhong
    Li, Lei
    Qiang, Yujian
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5964 - 5968
  • [7] Equivalent Model and Parameter Identification of Lithium-Ion Battery
    Li, Rui
    Yu, Jialing
    Li, Jingnan
    Chen, Fuguang
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 29 - 39
  • [8] Fractional modeling and parameter identification of lithium-ion battery
    Jiang, Zeyu
    Li, Junhong
    Li, Lei
    Gu, Juping
    IONICS, 2022, 28 (09) : 4135 - 4148
  • [9] Fractional modeling and parameter identification of lithium-ion battery
    Zeyu Jiang
    Junhong Li
    Lei Li
    Juping Gu
    Ionics, 2022, 28 : 4135 - 4148
  • [10] A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system
    Wang, Zuolu
    Feng, Guojin
    Liu, Xiongwei
    Gu, Fengshou
    Ball, Andrew
    Journal of Energy Storage, 2022, 49