Nanoscale nuclear magnetic resonance with chemical resolution

被引:257
|
作者
Aslam, Nabeel [1 ,2 ]
Pfender, Matthias [1 ,2 ]
Neumann, Philipp [1 ,2 ]
Reuter, Rolf [1 ,2 ]
Zappe, Andrea [1 ,2 ]
de Oliveira, Felipe Favaro [1 ,2 ]
Denisenko, Andrej [1 ,2 ]
Sumiya, Hitoshi [3 ]
Onoda, Shinobu [4 ]
Isoya, Junichi [5 ]
Wrachtrup, Joerg [1 ,6 ]
机构
[1] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol IQST, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Phys Inst 3, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Sumitomo Elect Ind, Itami, Hyogo 6640016, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, 1233 Watanuki, Takasaki, Gunma 3701292, Japan
[5] Univ Tsukuba, Research Ctr Knowledge Communities, Tsukuba, Ibaraki 3058550, Japan
[6] Max Planck Inst Solid State Res, Stuttgart, Germany
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
NMR-SPECTROSCOPY;
D O I
10.1126/science.aam8697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H-1 and F-19 NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was similar to 1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [41] Assay by nuclear magnetic resonance spectroscopy: quantification limits
    Griffiths, L
    Irving, AM
    ANALYST, 1998, 123 (05) : 1061 - 1068
  • [42] Nuclear magnetic resonance study of flavoured olive oils
    Mannina, Luisa
    D'Imperio, Marco
    Gobbino, Marco
    D'Amico, Irene
    Casini, Antonio
    Emanuele, Maria Carmela
    Sobolev, Anatoly P.
    FLAVOUR AND FRAGRANCE JOURNAL, 2012, 27 (03) : 250 - 259
  • [43] Chiral discrimination via nuclear magnetic resonance spectroscopy
    Pelloni, Stefano
    Faglioni, Francesco
    Lazzeretti, Paolo
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2013, 24 (03) : 283 - 289
  • [44] Chiral discrimination via nuclear magnetic resonance spectroscopy
    Stefano Pelloni
    Francesco Faglioni
    Paolo Lazzeretti
    Rendiconti Lincei, 2013, 24 : 283 - 289
  • [45] Recent Applications of Benchtop Nuclear Magnetic Resonance Spectroscopy
    Yu, Hyo-Yeon
    Myoung, Sangki
    Ahn, Sangdoo
    MAGNETOCHEMISTRY, 2021, 7 (09)
  • [46] Nuclear magnetic resonance for foodomics beyond food analysis
    Laghi, Luca
    Picone, Gianfranco
    Capozzi, Francesco
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 59 : 93 - 102
  • [47] NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION
    Fernandez-Sanchez, Lilia
    Gutierrez-Arzaluz, Mirella
    de la Luz Soto-Tellez, Maria
    Hernandez-Martinez, Leonardo
    Corral-Lopez, Elpidio
    AVANCES EN CIENCIAS E INGENIERIA, 2015, 6 (01): : 7 - 15
  • [48] Benchtop nuclear magnetic resonance spectroscopy in forensic chemistry
    Draper, Sarah L.
    McCarney, Evan R.
    MAGNETIC RESONANCE IN CHEMISTRY, 2023, 61 (02) : 106 - 129
  • [49] Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data
    Chinea, Alejandro
    Gonzalez-Mora, Jose L.
    BIOINFORMATICS 2013: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOINFORMATICS MODELS, METHODS AND ALGORITHMS, 2013, : 212 - 222
  • [50] Tautomerism and Structure of Azoles: Nuclear Magnetic Resonance Spectroscopy
    Larina, Lyudmila I.
    ADVANCES IN HETEROCYCLIC CHEMISTRY, VOL 124, 2018, 124 : 233 - 321