Nanoscale nuclear magnetic resonance with chemical resolution

被引:257
|
作者
Aslam, Nabeel [1 ,2 ]
Pfender, Matthias [1 ,2 ]
Neumann, Philipp [1 ,2 ]
Reuter, Rolf [1 ,2 ]
Zappe, Andrea [1 ,2 ]
de Oliveira, Felipe Favaro [1 ,2 ]
Denisenko, Andrej [1 ,2 ]
Sumiya, Hitoshi [3 ]
Onoda, Shinobu [4 ]
Isoya, Junichi [5 ]
Wrachtrup, Joerg [1 ,6 ]
机构
[1] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol IQST, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Phys Inst 3, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Sumitomo Elect Ind, Itami, Hyogo 6640016, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, 1233 Watanuki, Takasaki, Gunma 3701292, Japan
[5] Univ Tsukuba, Research Ctr Knowledge Communities, Tsukuba, Ibaraki 3058550, Japan
[6] Max Planck Inst Solid State Res, Stuttgart, Germany
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
NMR-SPECTROSCOPY;
D O I
10.1126/science.aam8697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H-1 and F-19 NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was similar to 1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [1] High Resolution Nuclear Magnetic Resonance Spectroscopy on Biological Tissue and Metabolomics
    Lin, Yanqin
    Zeng, Qing
    Lin, Liangjie
    Chen, Zhong
    CURRENT MEDICINAL CHEMISTRY, 2019, 26 (12) : 2190 - 2207
  • [2] Automatic Chemical Profiling of Wine by Proton Nuclear Magnetic Resonance Spectroscopy
    Lee, Brian L.
    Rout, Manoj
    Dong, Ying
    Lipfert, Matthias
    Berjanskii, Mark
    Shahin, Fatemeh
    Bhattacharyya, Dipanjan
    Selim, Alyaa
    Mandal, Rupasri
    Wishart, David S.
    ACS FOOD SCIENCE & TECHNOLOGY, 2024, 4 (08): : 1937 - 1949
  • [3] High-resolution two-field nuclear magnetic resonance spectroscopy
    Cousin, Samuel F.
    Charlier, Cyril
    Kaderavek, Pavel
    Marquardsen, Thorsten
    Tyburn, Jean-Max
    Bovier, Pierre-Alain
    Ulzega, Simone
    Speck, Thomas
    Wilhelm, Dirk
    Engelke, Frank
    Maas, Werner
    Sakellariou, Dimitrios
    Bodenhausen, Geoffrey
    Pelupessy, Philippe
    Ferrage, Fabien
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (48) : 33187 - 33194
  • [4] High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis
    Santos, A. D. C.
    Fonseca, F. A.
    Liao, L. M.
    Alcantara, G. B.
    Barison, A.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2015, 73 : 10 - 18
  • [5] High-Resolution Nuclear Magnetic Resonance Spectroscopy with Picomole Sensitivity by Hyperpolarization on a Chip
    Eills, James
    Hale, William
    Sharma, Manvendra
    Rossetto, Matheus
    Levitt, Malcolm H.
    Utz, Marcel
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (25) : 9955 - 9963
  • [6] Equilibrating magnetic dispersion and magnet homogeneity for the high-resolution proton nuclear magnetic resonance of monosubstituted naphthalenes
    Becerra-Martinez, Elvia
    Perez-Hernandez, Nury
    Sanchez-Zavala, Maricruz
    Melendez-Rodriguez, Myriam
    Aristeo-Dominguez, Alberto
    Suarez-Castillo, Oscar R.
    Joseph-Nathan, Pedro
    SPECTROSCOPY LETTERS, 2022, 55 (06) : 424 - 436
  • [7] Nuclear Magnetic Resonance Chemical Shift as a Probe for Single-Molecule Charge Transport
    Qiao, X.
    Sil, A.
    Sangtarash, S.
    Smith, S. M.
    Wu, C.
    Robertson, C. M.
    Nichols, R. J.
    Higgins, S. J.
    Sadeghi, H.
    Vezzoli, A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (19)
  • [8] Nuclear magnetic resonance spectroscopy of adamantane derivatives: interpretation of proton and carbon chemical shifts
    Mitrev, Yavor
    Chayrov, Radoslav
    Stankova, Ivanka
    SPECTROSCOPY LETTERS, 2020, 53 (07) : 489 - 493
  • [9] Calculating Nuclear Magnetic Resonance Chemical Shifts from Density Functional Theory: A Primer
    Beran, Gregory J. O.
    EMAGRES, 2019, 8 (03): : 215 - 226
  • [10] Adaptable Singlet-Filtered Nuclear Magnetic Resonance Spectroscopy for Chemical and Biological Applications
    Huang, Chengda
    Peng, Yang
    Lin, Enping
    Ni, Zhikai
    Lin, Xiaoqing
    Zhan, Haolin
    Huang, Yuqing
    Chen, Zhong
    ANALYTICAL CHEMISTRY, 2022, 94 (10) : 4201 - 4208