Using Machine Learning to Predict 30-Day Readmission of Patients Hospitalized With an Acute Myocardial Infarction

被引:0
|
作者
Francisco, Ashley [1 ]
Stabler, Meagan E. [2 ]
Hisey, William [2 ]
Mackenzie, Todd A. [3 ]
Dorn, Chad [4 ]
Denton, Jason [4 ]
Matheny, Michael E. [4 ]
Brown, Jeremiah R. [2 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
[2] Dartmouth Coll, Dartmouth Inst Hlth Policy & Clin Practice, 1 Med Ctr Dr, Lebanon, NH 03756 USA
[3] Geisel Sch Med Dartmouth, Dept Biomed Data Sci, Lebanon, NH USA
[4] Vanderbilt Univ, Dept Biomed Informat, 221 Kirkland Hall, Nashville, TN 37235 USA
关键词
Myocardial infarction; Epidemiologic methods; Electronic health records (EHRs); Research; Prevention;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A15808
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Optimized Machine Learning Models by Identification of Candidate Predictors for 30-Day Readmission Risk Prediction Among Patients Hospitalized for Acute Myocardial Infarction
    Thiriveedi, Likhita Sree
    Ricket, Iben
    Brown, Jeremiah R.
    CIRCULATION, 2022, 146
  • [2] Etiologies and Predictors of 30-Day Readmission in Patients with Acute Myocardial Infarction and Cardiogenic Shock
    Patil, Shantanu
    Shah, Mahek
    Davila, Carlos D.
    Patel, Brijesh
    Shin, Jooyoung J.
    Kapur, Navin K.
    Jorde, Ulrich P.
    JOURNAL OF CARDIAC FAILURE, 2017, 23 (08) : S109 - S109
  • [3] Causes and Predictors of 30-Day Readmission in Patients With Acute Myocardial Infarction and Cardiogenic Shock
    Shah, Mahek
    Patil, Shantanu
    Patel, Brijesh
    Agarwal, Manyoo
    Davila, Carlos D.
    Garg, Lohit
    Agrawal, Sahil
    Kapur, Navin K.
    Jorde, Ulrich P.
    CIRCULATION-HEART FAILURE, 2018, 11 (04)
  • [4] LACE Index to Predict the High Risk of 30-Day Readmission in Patients With Acute Myocardial Infarction at a University Affiliated Hospital
    Rajaguru, Vasuki
    Kim, Tae Hyun
    Han, Whiejong
    Shin, Jaeyong
    Lee, Sang Gyu
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [5] Unplanned 30-Day Readmission after Coronary Artery Bypass in Patients with Acute Myocardial Infarction
    Case, Robert
    George, Jerin
    Li, Qian
    Arnaoutakis, George J.
    Keeley, Ellen C.
    CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2020, 21 (04) : 518 - 521
  • [6] Explainable machine learning for predicting 30-day readmission in acute heart failure patients
    Zhang, Yang
    Xiang, Tianyu
    Wang, Yanqing
    Shu, Tingting
    Yin, Chengliang
    Li, Huan
    Duan, Minjie
    Sun, Mengyan
    Zhao, Binyi
    Kadier, Kaisaierjiang
    Xu, Qian
    Ling, Tao
    Kong, Fanqi
    Liu, Xiaozhu
    ISCIENCE, 2024, 27 (07)
  • [7] Health literacy and 30-day hospital readmission after acute myocardial infarction
    Bailey, Stacy Cooper
    Fang, Gang
    Annis, Izabela E.
    O'Conor, Rachel
    Paasche-Orlow, Michael K.
    Wolf, Michael S.
    BMJ OPEN, 2015, 5 (06):
  • [8] Evaluating machine learning algorithms to Predict 30-day Unplanned REadmission (PURE) in Urology patients
    Welvaars, Koen
    van den Bekerom, Michel P. J.
    Doornberg, Job
    van Haarst, Ernst
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [9] Evaluating machine learning algorithms to Predict 30-day Unplanned REadmission (PURE) in Urology patients
    Koen Welvaars
    Michel P. J. van den Bekerom
    Job N. Doornberg
    Ernst P. van Haarst
    BMC Medical Informatics and Decision Making, 23
  • [10] Ability of the LACE Index to Predict 30-Day Readmissions in Patients with Acute Myocardial Infarction
    Rajaguru, Vasuki
    Kim, Tae Hyun
    Shin, Jaeyong
    Lee, Sang Gyu
    Han, Whiejong
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (07):