Monocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization

被引:12
|
作者
Liu, Yi [1 ]
Chen, Zhong [1 ]
Zheng, Wenjuan [2 ]
Wang, Hao [2 ]
Liu, Jianguo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
[2] Beijing Aerosp Automat Control Inst, Beijing 100854, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
sensor fusion; SLAM; computer vision; inertial navigation; tightly coupled; INVERSE DEPTH; ODOMETRY; VISION; MOTION;
D O I
10.3390/s17112613
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we propose a new visual-inertial Simultaneous Localization and Mapping (SLAM) algorithm. With the tightly coupled sensor fusion of a global shutter monocular camera and a low-cost Inertial Measurement Unit (IMU), this algorithm is able to achieve robust and real-time estimates of the sensor poses in unknown environment. To address the real-time visual-inertial fusion problem, we present a parallel framework with a novel IMU initialization method. Our algorithm also benefits from the novel IMU factor, the continuous preintegration method, the vision factor of directional error, the separability trick and the robust initialization criterion which can efficiently output reliable estimates in real-time on modern Central Processing Unit (CPU). Tremendous experiments also validate the proposed algorithm and prove it is comparable to the state-of-art method.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Visual-Inertial SLAM Initialization: A General Linear Formulation and a Gravity-Observing Non-Linear Optimization
    Dominguez-Conti, Javier
    Yin, Jianfeng
    Alami, Yacine
    Civera, Javier
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2018, : 37 - 45
  • [32] LDVI-SLAM: a lightweight monocular visual-inertial SLAM system for dynamic environments based on motion constraints
    Wang, Fenghua
    Zhao, Lengrui
    Xu, Zhicheng
    Liang, Hong
    Zhang, Qian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [33] Research on Visual-Inertial SLAM Technology with GNSS Assistance
    Zhao, Lin
    Wang, Xiaohan
    Zheng, Xiaoze
    Jia, Chun
    CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL II, 2022, 909 : 425 - 434
  • [34] IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    ROBOTICS: SCIENCE AND SYSTEMS XI, 2015,
  • [35] Visual-Inertial Odometry with Robust Initialization and Online Scale Estimation
    Hong, Euntae
    Lim, Jongwoo
    SENSORS, 2018, 18 (12)
  • [36] Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking
    Servieres, Myriam
    Renaudin, Valerie
    Dupuis, Alexis
    Antigny, Nicolas
    JOURNAL OF SENSORS, 2021, 2021
  • [37] An Analytical Solution to the IMU Initialization Problem for Visual-Inertial Systems
    Zuniga-Noel, David
    Moreno, Francisco-Angel
    Gonzalez-Jimenez, Javier
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 6116 - 6122
  • [38] An Improved Monocular Visual-Inertial Navigation System
    Sun, Tian
    Liu, Yong
    Wang, Yujie
    Xiao, Zhen
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11728 - 11739
  • [39] COVINS: Visual-Inertial SLAM for Centralized Collaboration
    Schmuck, Patrik
    Ziegler, Thomas
    Karrer, Marco
    Perraudin, Jonathan
    Chli, Margarita
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY ADJUNCT PROCEEDINGS (ISMAR-ADJUNCT 2021), 2021, : 171 - 176
  • [40] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE ACCESS, 2022, 10 : 103975 - 103986