Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma-vacuum interface

被引:10
|
作者
Gupta, D. N. [1 ]
Jain, A. [1 ]
Kulagin, V. V. [2 ]
Hur, M. S. [3 ]
Suk, H. [4 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[2] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Univ Sky Prosp 13, Moscow 119992, Russia
[3] Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Ulsan 44919, South Korea
[4] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2022年 / 128卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
PULSES; SURFACE;
D O I
10.1007/s00340-022-07777-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate a way for generating strong terahertz (THz) radiation source at a plasma-vacuum interface from laser interactions with a plasma slab. We utilize the special focusing properties of a flattened Gaussian laser beam to generate high-field THz radiation. The laser exerts a nonlinear ponderomotive force, imparting an oscillatory velocity to plasma electrons. The coupling of the oscillatory velocity to the sharp density gradient (at plasma-vacuum interface) generates plasma currents. When the transverse field originated in plasma region crosses the plasma-vacuum interface, electromagnetic radiation at THz frequency is emitted. Flattened Gaussian beams, having the same energy as Gaussian ones, evacuate electrons from a larger area of the plasma, generating stronger plasma current and thus relatively stronger THz fields. Employing a flattened Gaussian laser beam with P = 3 (where P is the order of the Gaussian shape) yields stronger THz radiation with relatively higher electric field of about 1 MV/cm with a peak frequency of 18 THz. Compared to the case of an ordinary Gaussian beam, THz field strength is substantially enhanced for the flattened Gaussian beam case.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma–vacuum interface
    D. N. Gupta
    A. Jain
    V. V. Kulagin
    M. S. Hur
    H. Suk
    Applied Physics B, 2022, 128
  • [2] Theory of coherent transition radiation generated at a plasma-vacuum interface
    Schroeder, CB
    Esarey, E
    van Tilborg, J
    Leemans, WP
    PHYSICAL REVIEW E, 2004, 69 (01): : 12
  • [3] Transition radiation generated by a short laser pulse at a plasma-vacuum interface
    L. M. Gorbunov
    A. A. Frolov
    Plasma Physics Reports, 2006, 32 : 850 - 865
  • [4] Transition radiation generated by a short laser pulse at a plasma-vacuum interface
    Gorbunov, L. M.
    Frolov, A. A.
    PLASMA PHYSICS REPORTS, 2006, 32 (10) : 850 - 865
  • [5] Effect of plasma-vacuum boundary for coherent transition radiation
    Zobdeh, P.
    Esmailian, A. H.
    Abad, P.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2014, 8 (9-10): : 840 - 844
  • [6] Effect of plasma-vacuum boundary for coherent transition radiation
    Zobdeh, P.
    Esmailian, A.H.
    Abad, P.
    Optoelectronics and Advanced Materials, Rapid Communications, 2020, 8 (9-10): : 840 - 844
  • [7] Attosecond pulse generation during the laser pulse reflection at the plasma-vacuum interface
    Pirozhkov, AS
    Daido, H
    Bulanov, SV
    ULTRAFAST PHENOMENA XIV, 2005, 79 : 216 - 218
  • [8] Dynamics of Hermite–Gaussian laser beam in plasma and terahertz generation
    Kad P.
    Rana V.
    Singh A.
    Optik, 2023, 274
  • [9] PLASMA-VACUUM INTERFACE PROBLEMS IN MAGNETOHYDRODYNAMICS
    GOEDBLOED, JP
    PHYSICA D, 1984, 12 (1-3): : 107 - 132
  • [10] Envelope solitons at a plasma-vacuum interface
    Shukla, P. K.
    Stenflo, L.
    JOURNAL OF PLASMA PHYSICS, 2008, 74 : 151 - 154