The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance

被引:16
作者
Hu, Che-Yuan [1 ,2 ]
Wu, Kuan-Yu [2 ]
Lin, Tsung-Yen [2 ,3 ]
Chen, Chien-Chin [4 ,5 ]
机构
[1] Natl Cheng Kung Univ, Inst Clin Med, Coll Med, Tainan 704, Taiwan
[2] Natl Cheng Kung Univ, Natl Cheng Kung Univ Hosp, Dept Urol, Coll Med, Tainan 704, Taiwan
[3] Natl Cheng Kung Univ, Div Urol, Natl Cheng Kung Univ Hosp, Dept Surg,Dou Liou Branch, Yunlin 640, Taiwan
[4] Ditmanson Med Fdn Chia Yi Christian Hosp, Dept Pathol, Chiayi 600, Taiwan
[5] Chia Nan Univ Pharm & Sci, Dept Cosmet Sci, Tainan 717, Taiwan
关键词
cancer; epigenetics; long non-coding RNAs; microRNAs; prostate cancer; castration-resistant; neuroendocrine; EPITHELIAL-MESENCHYMAL TRANSITION; ESTRO-SIOG GUIDELINES; ANDROGEN-RECEPTOR; ABIRATERONE ACETATE; LINEAGE PLASTICITY; SURVIVAL ANALYSIS; GROWTH-FACTOR; DOUBLE-BLIND; PROGRESSION; METASTASIS;
D O I
10.3390/ijms23010392
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1-2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3' untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA-miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
引用
收藏
页数:17
相关论文
共 123 条
[71]   LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling [J].
Luo, Jie ;
Wang, Keliang ;
Yeh, Shuyuan ;
Sun, Yin ;
Liang, Liang ;
Xiao, Yao ;
Xu, Wanhai ;
Niu, Yuanjie ;
Cheng, Liang ;
Maity, Sankar N. ;
Jiang, Runze ;
Chang, Chawnshang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[72]  
Ma GX, 2016, AM J TRANSL RES, V8, P5141
[73]   Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment [J].
Makino, Tomoyuki ;
Izumi, Kouji ;
Mizokami, Atsushi .
BIOMEDICINES, 2021, 9 (04)
[74]   The epithelial-mesenchymal transition generates cells with properties of stem cells [J].
Mani, Sendurai A. ;
Guo, Wenjun ;
Liao, Mai-Jing ;
Eaton, Elinor Ng. ;
Ayyanan, Ayyakkannu ;
Zhou, Alicia Y. ;
Brooks, Mary ;
Reinhard, Ferenc ;
Zhang, Cheng Cheng ;
Shipitsin, Michail ;
Campbell, Lauren L. ;
Polyak, Kornelia ;
Brisken, Cathrin ;
Yang, Jing ;
Weinberg, Robert A. .
CELL, 2008, 133 (04) :704-715
[75]   The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms [J].
Mather, Rebecca L. ;
Parolia, Abhijit ;
Carson, Sandra E. ;
Venalainen, Erik ;
Roig-Carles, David ;
Jaber, Mustapha ;
Chu, Shih-Chun ;
Alborelli, Ilaria ;
Wu, Rebecca ;
Lin, Dong ;
Nabavi, Noushin ;
Jachetti, Elena ;
Colombo, Mario P. ;
Xue, Hui ;
Pucci, Perla ;
Ci, Xinpei ;
Hawkes, Cheryl ;
Li, Yinglei ;
Pandha, Hardev ;
Ulitsky, Igor ;
Marconett, Crystal ;
Quagliata, Luca ;
Jiang, Wei ;
Romero, Ignacio ;
Wang, Yuzhuo ;
Crea, Francesco .
MOLECULAR ONCOLOGY, 2021, 15 (07) :1921-1941
[76]   Widespread Shortening of 3′UTRs by Alternative Cleavage and Polyadenylation Activates Oncogenes in Cancer Cells [J].
Mayr, Christine ;
Bartel, David P. .
CELL, 2009, 138 (04) :673-684
[77]   Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability [J].
Mirza, Sameer ;
Katafiasz, Bryan J. ;
Kumar, Rakesh ;
Wang, Jun ;
Mohibi, Shakur ;
Jain, Smrati ;
Gurumurthy, Channabasavaiah Basavaraju ;
Pandita, Tej K. ;
Dave, Bhavana J. ;
Band, Hamid ;
Band, Vimla .
CELL CYCLE, 2012, 11 (22) :4266-4274
[78]   Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer [J].
Mosquera, Juan Miguel ;
Beltran, Himisha ;
Park, Kyung ;
MacDonald, Theresa Y. ;
Robinson, Brian D. ;
Tagawa, Scott T. ;
Perner, Sven ;
Bismar, Tarek A. ;
Erbersdobler, Andreas ;
Dhir, Rajiv ;
Nelson, Joel B. ;
Nanus, David M. ;
Rubin, Mark A. .
NEOPLASIA, 2013, 15 (01) :1-+
[79]   EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent [J].
Mottet, Nicolas ;
Bellmunt, Joaquim ;
Bolla, Michel ;
Briers, Erik ;
Cumberbatch, Marcus G. ;
De Santis, Maria ;
Fossati, Nicola ;
Gross, Tobias ;
Henry, Ann M. ;
Joniau, Steven ;
Lam, Thomas B. ;
Mason, Malcolm D. ;
Matveev, Vsevolod B. ;
Moldovan, Paul C. ;
van den Bergh, Roderick C. N. ;
Van den Broeck, Thomas ;
van der Poel, Henk G. ;
van der Kwast, Theo H. ;
Rouviere, Olivier ;
Schoots, Ivo G. ;
Wiegel, Thomas ;
Cornford, Philip .
EUROPEAN UROLOGY, 2017, 71 (04) :618-629
[80]   SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer [J].
Mu, Ping ;
Zhang, Zeda ;
Benelli, Matteo ;
Karthaus, Wouter R. ;
Hoover, Elizabeth ;
Chen, Chi-Chao ;
Wongvipat, John ;
Ku, Sheng-Yu ;
Gao, Dong ;
Cao, Zhen ;
Shah, Neel ;
Adams, Elizabeth J. ;
Abida, Wassim ;
Watson, Philip A. ;
Prandi, Davide ;
Huang, Chun-Hao ;
de Stanchina, Elisa ;
Lowe, Scott W. ;
Ellis, Leigh ;
Beltran, Himisha ;
Rubin, Mark A. ;
Goodrich, David W. ;
Demichelis, Francesca ;
Sawyers, Charles L. .
SCIENCE, 2017, 355 (6320) :84-88