Building Heating and Cooling Load Prediction Using Ensemble Machine Learning Model

被引:38
作者
Chaganti, Rajasekhar [1 ]
Rustam, Furqan [2 ]
Daghriri, Talal [3 ]
de la Torre Diez, Isabel [4 ]
Vidal Mazon, Juan Luis [5 ,6 ,7 ]
Lili Rodriguez, Carmen [5 ,8 ]
Ashraf, Imran [9 ]
机构
[1] Toyota Res Inst, Los Altos, CA 94022 USA
[2] Univ Coll Dublin, Sch Comp Sci, Dublin D04 V1W8, Ireland
[3] Jazan Univ, Dept Ind Engn, Jazan 45142, Saudi Arabia
[4] Univ Valladolid, Dept Signal Theory & Commun & Telemat Engn, Paseo Belen 15, Valladolid 47011, Spain
[5] Univ Europea Atlantico, Isabel Torres 21, Santander 39011, Spain
[6] Univ Int Iberoamer Arecibo, Arecibo, PR 00613 USA
[7] Univ Int Cuanza, Cuito POB 841, Bie, Angola
[8] Univ Int Iberoamer, San Francisco de Campech 24560, Campeche, Mexico
[9] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea
关键词
energy consumption prediction; cooling load; smart homes; Internet of Things; sustainable homes; ENERGY PERFORMANCE; ARTIFICIAL-INTELLIGENCE; DESIGN;
D O I
10.3390/s22197692
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Building energy consumption prediction has become an important research problem within the context of sustainable homes and smart cities. Data-driven approaches have been regarded as the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the data generated from these sensors can be used for modeling and forecasting energy consumption patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very well studied. This study follows a data-driven approach in this regard. The novelty of the paper lies in the fact that an ensemble model is proposed, which provides higher performance regarding cooling and heating load prediction. Moreover, the influence of different features on heating and cooling load is investigated. Experiments are performed by considering different features such as glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results indicate that relative compactness, surface area, and wall area play a significant role in selecting the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R-2 for heating load prediction and 0.997 R-2 for cooling load prediction, which is superior to existing state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design energy-efficient buildings, especially in the context of future smart homes.
引用
收藏
页数:22
相关论文
共 26 条
[1]   An Ensemble Learning Approach for Accurate Energy Prediction in Residential Buildings [J].
Al-Rakhami, Mabrook ;
Gumaei, Abdu ;
Alsanad, Ahmed ;
Alamri, Atif ;
Hassan, Mohammad Mehedi .
IEEE ACCESS, 2019, 7 :48328-48338
[2]  
[Anonymous], ADAFAEPOV
[3]  
Azrour M., 2022, IOT SMART DEVICES SU, DOI [10.1007/978-3-030-90083-0, DOI 10.1007/978-3-030-90083-0]
[4]   Modeling and forecasting building energy consumption: A review of data-driven techniques [J].
Bourdeau, Mathieu ;
Zhai, Xiao Qiang ;
Nefzaoui, Elyes ;
Guo, Xiaofeng ;
Chatellier, Patrice .
SUSTAINABLE CITIES AND SOCIETY, 2019, 48
[5]   Advanced machine learning techniques for building performance simulation: a comparative analysis [J].
Chakraborty, Debaditya ;
Elzarka, Hazem .
JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2019, 12 (02) :193-207
[6]   Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines [J].
Cheng, Min-Yuan ;
Cao, Minh-Tu .
APPLIED SOFT COMPUTING, 2014, 22 :178-188
[7]   Modeling heating and cooling loads by artificial intelligence for energy-efficient building design [J].
Chou, Jui-Sheng ;
Bui, Dac-Khuong .
ENERGY AND BUILDINGS, 2014, 82 :437-446
[8]   Ultra-Short-Term Building Cooling Load Prediction Model Based on Feature Set Construction and Ensemble Machine Learning [J].
Ding, Yan ;
Su, Hao ;
Kong, Xiangfei ;
Zhang, Zhenqin .
IEEE ACCESS, 2020, 8 :178733-178745
[9]  
Duarte Grasiele Regina, 2017, Ambient. constr., V17, P103, DOI 10.1590/s1678-86212017000300165
[10]   Component-based machine learning for performance prediction in building design [J].
Geyer, Philipp ;
Singaravel, Sundaravelpandian .
APPLIED ENERGY, 2018, 228 :1439-1453