On the exactness of simple natural spin-orbital functionals for a high-density homogeneous electron gas

被引:39
作者
Cioslowski, J [1 ]
Ziesche, P
Pernal, K
机构
[1] Florida State Univ, Dept Chem, Tallahassee, FL 32306 USA
[2] Florida State Univ, Sch Comp Sci & Informat Technol, Tallahassee, FL 32306 USA
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevB.63.205105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Detailed analysis of the Euler equation pertaining to the natural spin-orbital functional of the form V-ee =1/2 Sigmap not equalq[n(p)n(q)J(pq) - Omega (n(p),n(q))K-pq], where V-ee is the electron-electron repulsion energy, {n(p)}are the occupancy numbers, and {J(pq)} and {K-pq} are the respective Coulomb and exchange integrals, reveals that the large- and small-k asymptotics of the momentum distribution n(k) of a high-density homogeneous electron gas rigorously determine the behavior of the function Omega (x,y) for each of its arguments approaching either 0 or 1. However, since the resulting Omega (x,y) does not give rise to n(k) with a proper discontinuity at the Fermi level, such functionals cannot be exact for this system.
引用
收藏
页数:8
相关论文
共 25 条
[1]   The electron-electron repulsion energy as a functional of the Hartree-Fock one-electron density matrix [J].
Cioslowski, J ;
Lopez-Boada, R .
CHEMICAL PHYSICS LETTERS, 1999, 307 (5-6) :445-452
[2]   Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas [J].
Cioslowski, J ;
Pernal, K .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (08) :3396-3400
[3]   Approximate one-electron density matrix functionals for the electron-electron repulsion energy from the hypervirial theorem [J].
Cioslowski, J ;
Lopez-Boada, R .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11) :4156-4163
[4]   Description of a homogeneous electron gas with simple functionals of the one-particle density matrix [J].
Cioslowski, J ;
Pernal, K .
PHYSICAL REVIEW A, 2000, 61 (03) :3
[5]   STRUCTURE OF FERMION DENSITY MATRICES [J].
COLEMAN, AJ .
REVIEWS OF MODERN PHYSICS, 1963, 35 (03) :668-&
[6]   Tensor product expansions for correlation in quantum many-body systems [J].
Csányi, G ;
Arias, TA .
PHYSICAL REVIEW B, 2000, 61 (11) :7348-7352
[7]   MOMENTUM DISTRIBUTION OF AN INTERACTING ELECTRON GAS [J].
DANIEL, E ;
VOSKO, SH .
PHYSICAL REVIEW, 1960, 120 (06) :2041-2044
[8]  
Fetter A. L., 1971, QUANTUM THEORY MANY
[9]  
GELLMANN M, 1957, PHYS REV, V106, P364, DOI 10.1103/PhysRev.106.364
[10]  
Goedecker S, 2000, MAT COM CHE, P165