Permutation polynomials over finite rings

被引:4
|
作者
Gorcsos, Dalma [1 ]
Horvath, Gabor [1 ]
Meszaros, Anett [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Permutation polynomials; Local rings; Group of permutation polynomial; functions; INTERLEAVERS;
D O I
10.1016/j.ffa.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PPol(R) denote the group of permutation polynomial functions over the finite, commutative, unital ring R under composition. We generalize numerous results about permutation polynomials over Z to local rings by treating them under a unified manner. In particular, we provide a natural wreath product decomposition of permutation polynomial functions over the maximal ideal M and over the finite field R/M. We characterize the group of permutation polynomial functions over M whenever the condition M-vertical bar R/M vertical bar = {0} applies. Then we derive the size of PPol(R), thereby generalizing the same size formulas for Z(p)(n). Finally, we completely characterize when the group PPol(R) is solvable, nilpotent, or abelian. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 50 条
  • [41] Permutation polynomials, fractional polynomials, and algebraic curves
    Bartoli, Daniele
    Giulietti, Massimo
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 1 - 16
  • [42] Polynomial functions over finite commutative rings
    Bulyovszky, Balazs
    Horvath, Gabor
    THEORETICAL COMPUTER SCIENCE, 2017, 703 : 76 - 86
  • [43] Further results on complete permutation monomials over finite fields
    Feng, Xiutao
    Lin, Dongdai
    Wang, Liping
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 47 - 59
  • [44] CYCLE STRUCTURE OF PERMUTATION FUNCTIONS OVER FINITE FIELDS AND THEIR APPLICATIONS
    Sakzad, Amin
    Sadeghi, Mohammad-Reza
    Panario, Daniel
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (03) : 347 - 361
  • [45] ALGORITHMS FOR COMPUTING THE PERMUTATION RESEMBLANCE OF FUNCTIONS OVER FINITE GROUPS
    Chen, Li-An
    Coulter, Robert S.
    MATHEMATICS OF COMPUTATION, 2025, 94 (353) : 1543 - 1570
  • [46] On the difference between permutation polynomials
    Anbar, Nurdagul
    Odzak, Almasa
    Patel, Vandita
    Quoos, Luciane
    Somoza, Anna
    Topuzoglu, Alev
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 132 - 142
  • [47] On some classes of permutation polynomials
    Akbary, Amir
    Alaric, Sean
    Wang, Qiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (01) : 121 - 133
  • [48] Quasi-permutation polynomials
    Vichian Laohakosol
    Suphawan Janphaisaeng
    Czechoslovak Mathematical Journal, 2010, 60 : 457 - 488
  • [49] On permutation polynomials of prescribed shape
    Akbary, Amir
    Ghioca, Dragos
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (02) : 195 - 206
  • [50] Permutation polynomials on symmetric matrices
    Teitloff, TC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 296 (1-3) : 233 - 243