Permutation polynomials over finite rings

被引:4
|
作者
Gorcsos, Dalma [1 ]
Horvath, Gabor [1 ]
Meszaros, Anett [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Permutation polynomials; Local rings; Group of permutation polynomial; functions; INTERLEAVERS;
D O I
10.1016/j.ffa.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PPol(R) denote the group of permutation polynomial functions over the finite, commutative, unital ring R under composition. We generalize numerous results about permutation polynomials over Z to local rings by treating them under a unified manner. In particular, we provide a natural wreath product decomposition of permutation polynomial functions over the maximal ideal M and over the finite field R/M. We characterize the group of permutation polynomial functions over M whenever the condition M-vertical bar R/M vertical bar = {0} applies. Then we derive the size of PPol(R), thereby generalizing the same size formulas for Z(p)(n). Finally, we completely characterize when the group PPol(R) is solvable, nilpotent, or abelian. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 50 条
  • [31] Constructing permutation polynomials from permutation polynomials of subfields
    Reis, Lucas
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [32] On a class of permutation trinomials over finite fields
    Temur, Burcu Gulmez
    Ozkaya, Buket
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (04)
  • [33] Dickson polynomials over finite fields
    Wang, Qiang
    Yucas, Joseph L.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 814 - 831
  • [34] On inverse permutation polynomials
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (02) : 207 - 213
  • [35] Enumerating permutation polynomials
    Garefalakis, Theodoulos
    Kapetanakis, Giorgos
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 : 85 - 93
  • [36] TESTS FOR PERMUTATION POLYNOMIALS
    VONZURGATHEN, J
    SIAM JOURNAL ON COMPUTING, 1991, 20 (03) : 591 - 602
  • [37] Degree of orthomorphism polynomials over finite fields
    Allsop, Jack
    Wanless, Ian M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 75
  • [38] Generalized Lucas polynomials over finite fields
    Li, Lisha
    Wang, Qiang
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [39] The additive index of polynomials over finite fields
    Reis, Lucas
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79
  • [40] Complete permutation polynomials from exceptional polynomials
    Bartoli, D.
    Giulietti, M.
    Quoos, L.
    Zini, G.
    JOURNAL OF NUMBER THEORY, 2017, 176 : 46 - 66