Permutation polynomials over finite rings

被引:4
|
作者
Gorcsos, Dalma [1 ]
Horvath, Gabor [1 ]
Meszaros, Anett [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Permutation polynomials; Local rings; Group of permutation polynomial; functions; INTERLEAVERS;
D O I
10.1016/j.ffa.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PPol(R) denote the group of permutation polynomial functions over the finite, commutative, unital ring R under composition. We generalize numerous results about permutation polynomials over Z to local rings by treating them under a unified manner. In particular, we provide a natural wreath product decomposition of permutation polynomial functions over the maximal ideal M and over the finite field R/M. We characterize the group of permutation polynomial functions over M whenever the condition M-vertical bar R/M vertical bar = {0} applies. Then we derive the size of PPol(R), thereby generalizing the same size formulas for Z(p)(n). Finally, we completely characterize when the group PPol(R) is solvable, nilpotent, or abelian. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 50 条
  • [21] Local Permutation Polynomials of Maximum Degree Over Prime Finite Fields
    Gutierrez, Jaime
    Urroz, Jorge Jimenez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)
  • [22] Study on Interleaver Design for Turbo Codes Using Permutation Polynomials over Integer Rings
    Zhang, Le
    Xu, Youyun
    Ma, Xinrui
    Luo, Hanwen
    Gan, Xiaoying
    2006 IEEE 64TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2006, : 1530 - 1534
  • [23] Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields
    Li, Kangquan
    Qu, Longjiang
    Wang, Qiang
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (02): : 279 - 298
  • [24] Randomness of Sequences of Numbers Using Permutation Polynomials over Prime Finite Fields
    Harish, Mansi
    Vinayak, Sagar
    Gupta, Shalini
    CONTEMPORARY MATHEMATICS, 2023, 4 (03): : 453 - 466
  • [25] Ambiguity, deficiency and differential spectrum of normalized permutation polynomials over finite fields
    Panario, Daniel
    Santana, Daniel
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 : 330 - 350
  • [26] Compositional inverses of permutation polynomials of the form xrh(xs) over finite fields
    Kangquan Li
    Longjiang Qu
    Qiang Wang
    Cryptography and Communications, 2019, 11 : 279 - 298
  • [27] Euler quotients and Wilson quotients for polynomials over finite local rings
    Iamthong, Kittitat
    Meemark, Yotsanan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
  • [28] Group polynomials over rings
    Akishin, Aleksandr, V
    DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (06): : 357 - 364
  • [29] Permutation polynomials of the form cx + Tr ql/q (xa) and permutation trinomials over finite fields with even characteristic
    Li, Kangquan
    Qu, Longjiang
    Chen, Xi
    Li, Chao
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (03): : 531 - 554
  • [30] ON PERMUTATION BINOMIALS OVER FINITE FIELDS
    Ayad, Mohamed
    Belghaba, Kacem
    Kihel, Omar
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) : 112 - 124