Permutation polynomials over finite rings

被引:4
|
作者
Gorcsos, Dalma [1 ]
Horvath, Gabor [1 ]
Meszaros, Anett [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Permutation polynomials; Local rings; Group of permutation polynomial; functions; INTERLEAVERS;
D O I
10.1016/j.ffa.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let PPol(R) denote the group of permutation polynomial functions over the finite, commutative, unital ring R under composition. We generalize numerous results about permutation polynomials over Z to local rings by treating them under a unified manner. In particular, we provide a natural wreath product decomposition of permutation polynomial functions over the maximal ideal M and over the finite field R/M. We characterize the group of permutation polynomial functions over M whenever the condition M-vertical bar R/M vertical bar = {0} applies. Then we derive the size of PPol(R), thereby generalizing the same size formulas for Z(p)(n). Finally, we completely characterize when the group PPol(R) is solvable, nilpotent, or abelian. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 211
页数:14
相关论文
共 50 条
  • [1] PERMUTATION POLYNOMIALS OVER RESIDUE CLASS RINGS
    Karpov, A., V
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 22 (04): : 16 - +
  • [2] A Coefficient Test for Quintic Permutation Polynomials Over Integer Rings
    Trifina, Lucian
    Tarniceriu, Daniela
    IEEE ACCESS, 2018, 6 : 37893 - 37909
  • [3] A specific type of permutation and complete permutation polynomials over finite fields
    Ongan, Pinar
    Temur, Burcu Gulmez
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)
  • [4] Some generalized permutation polynomials over finite fields
    Qin, Xiaoer
    Yan, Li
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 75 - 87
  • [5] Permutation polynomials over finite fields providing involutions
    Kevinsam, B.
    Vanchinathan, P.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [6] Further results on permutation polynomials over finite fields
    Yuan, Pingzhi
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 88 - 103
  • [7] Cyclotomic mapping permutation polynomials over finite fields
    Wang, Qiang
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 119 - 128
  • [8] A coefficient test for fourth degree permutation polynomials over integer rings
    Trifina, Lucian
    Tarniceriu, Daniela
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2016, 70 (11) : 1565 - 1568
  • [9] Some new results on permutation polynomials over finite fields
    Ma, Jingxue
    Zhang, Tao
    Feng, Tao
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 83 (02) : 425 - 443
  • [10] Some new results on permutation polynomials over finite fields
    Jingxue Ma
    Tao Zhang
    Tao Feng
    Gennian Ge
    Designs, Codes and Cryptography, 2017, 83 : 425 - 443