RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS

被引:68
作者
Peng, Yue-Jun [1 ]
Wang, Shu [2 ]
Gu, Qilong [3 ]
机构
[1] CNRS, Math Lab, UMR 6620, F-63171 Aubiere, France
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Euler-Maxwell equations; drift-diffusion equations; zero-relaxation limit; global existence of smooth solutions; DISSIPATIVE HYPERBOLIC SYSTEMS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; POISSON SYSTEM; CONVEX ENTROPY; TIME LIMITS; SEMICONDUCTORS; CONVERGENCE; PLASMAS; PARAMETERS;
D O I
10.1137/100786927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth periodic solutions for the Euler-Maxwell equations, which are a symmetrizable hyperbolic system of balance laws. We proved that as the relaxation time tends to zero, the Euler-Maxwell system converges to the drift-diffusion equations at least locally in time. The global existence of smooth solutions is established near a constant state with an asymptotic stability property.
引用
收藏
页码:944 / 970
页数:27
相关论文
共 50 条
[41]   Approximations of Euler-Maxwell systems by drift-diffusion equations through zero-relaxation limits near the non-constant equilibrium [J].
Jin, Rui ;
Li, Yachun ;
Zhao, Liang .
SCIENCE CHINA-MATHEMATICS, 2025, 68 (05) :1051-1078
[42]   Global existence and decay of solution for the nonisentropic Euler-Maxwell system with a nonconstant background density [J].
Wang, Weike ;
Xu, Xin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[43]   The frequency-localization technique and minimal decay-regularity for Euler-Maxwell equations [J].
Xu, Jiang ;
Kawashima, Shuichi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1537-1554
[45]   The rigorous derivation of unipolar Euler-Maxwell system for electrons from bipolar Euler-Maxwell system by infinity-ion-mass limit [J].
Zhao, Liang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) :3418-3440
[46]   Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations [J].
Feng, Yue-Hong ;
Peng, Yue-Jun ;
Wang, Shu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 :105-116
[47]   Global smooth solutions of multidimensional compressible Euler equations with critical time depending damping and vorticity [J].
Zhang, Mengyun ;
Yuan, Meng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (02)
[48]   Global Solutions of the One-Dimensional Compressible Euler Equations with Nonlocal Interactions via the Inviscid Limit [J].
Carrillo, Jose A. ;
Chen, Gui-Qiang G. ;
Yuan, Difan ;
Zatorska, Ewelina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (03)
[49]   QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE QUANTUM NAVIER-STOKES-MAXWELL EQUATIONS [J].
Li, Min ;
Pu, Xueke ;
Wang, Shu .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (02) :363-391
[50]   ON THE QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE EULER-POISSON EQUATIONS [J].
Yang, Jianwei ;
Li, Dongling ;
Yang, Xiao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (11) :6797-6806