RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS

被引:68
作者
Peng, Yue-Jun [1 ]
Wang, Shu [2 ]
Gu, Qilong [3 ]
机构
[1] CNRS, Math Lab, UMR 6620, F-63171 Aubiere, France
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Euler-Maxwell equations; drift-diffusion equations; zero-relaxation limit; global existence of smooth solutions; DISSIPATIVE HYPERBOLIC SYSTEMS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; POISSON SYSTEM; CONVEX ENTROPY; TIME LIMITS; SEMICONDUCTORS; CONVERGENCE; PLASMAS; PARAMETERS;
D O I
10.1137/100786927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth periodic solutions for the Euler-Maxwell equations, which are a symmetrizable hyperbolic system of balance laws. We proved that as the relaxation time tends to zero, the Euler-Maxwell system converges to the drift-diffusion equations at least locally in time. The global existence of smooth solutions is established near a constant state with an asymptotic stability property.
引用
收藏
页码:944 / 970
页数:27
相关论文
共 50 条
[31]   Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations [J].
Yang, Jianwei ;
Wang, Shu ;
Li, Yong ;
Luo, Dang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) :3613-3625
[32]   Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations [J].
Yang, Jianwei ;
Wang, Hongli .
JOURNAL OF APPLIED MATHEMATICS, 2011,
[33]   Global existence of entropy solutions for euler equations of compressible fluid flow [J].
Lu, Yun-guang ;
Klingenberg, Christian ;
Tao, Xiangxing .
MATHEMATISCHE ANNALEN, 2025, 391 (01) :255-277
[34]   Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics [J].
Yang, Jianwei ;
Wang, Shu .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (12) :981-994
[35]   The Euler-Maxwell System for Electrons: Global Solutions in 2D [J].
Deng, Yu ;
Ionescu, Alexandru D. ;
Pausader, Benoit .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) :771-871
[36]   Relaxation limit in Besov spaces for compressible Euler equations [J].
Xu, Jiang ;
Wang, Zejun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (01) :43-61
[37]   Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system [J].
Tan, Zhong ;
Wang, Yong ;
Tong, Leilei .
NONLINEARITY, 2017, 30 (10) :3743-3772
[38]   Global solutions of the Euler-Maxwell two-fluid system in 3D [J].
Guo, Yan ;
Ionescu, Alexandru D. ;
Pausader, Benoit .
ANNALS OF MATHEMATICS, 2016, 183 (02) :377-498
[39]   Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping [J].
Wu, Fuzhou .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) :5103-5127
[40]   Existence and stability of almost finite energy weak solutions to the quantum Euler-Maxwell system [J].
Antonelli, Paolo ;
Marcati, Pierangelo ;
Scandone, Raffaele .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 191