RELAXATION LIMIT AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS OF COMPRESSIBLE EULER-MAXWELL EQUATIONS

被引:68
作者
Peng, Yue-Jun [1 ]
Wang, Shu [2 ]
Gu, Qilong [3 ]
机构
[1] CNRS, Math Lab, UMR 6620, F-63171 Aubiere, France
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Euler-Maxwell equations; drift-diffusion equations; zero-relaxation limit; global existence of smooth solutions; DISSIPATIVE HYPERBOLIC SYSTEMS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; POISSON SYSTEM; CONVEX ENTROPY; TIME LIMITS; SEMICONDUCTORS; CONVERGENCE; PLASMAS; PARAMETERS;
D O I
10.1137/100786927
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider smooth periodic solutions for the Euler-Maxwell equations, which are a symmetrizable hyperbolic system of balance laws. We proved that as the relaxation time tends to zero, the Euler-Maxwell system converges to the drift-diffusion equations at least locally in time. The global existence of smooth solutions is established near a constant state with an asymptotic stability property.
引用
收藏
页码:944 / 970
页数:27
相关论文
共 50 条
[21]   The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas [J].
Yang, Jianwei ;
Wang, Shu ;
Li, Yong ;
Luo, Dang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (01) :343-353
[22]   A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system [J].
Crin-Barat, Timothee ;
Peng, Yue-Jun ;
Shou, Ling-Yun ;
Xu, Jiang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (02)
[23]   Stability of non-constant equilibrium solutions for Euler-Maxwell equations [J].
Peng, Yue-Jun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01) :39-67
[24]   Convergence of the Euler-Maxwell two-fluid system to compressible Euler equations [J].
Yang, Jianwei ;
Wang, Shu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) :889-903
[25]   QUASINEUTRAL LIMIT FOR THE COMPRESSIBLE TWO-FLUID EULER-MAXWELL EQUATIONS FOR WELL-PREPARED INITIAL DATA [J].
Li, Min ;
Pu, Xueke ;
Wang, Shu .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02) :879-895
[26]   Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations [J].
Yang, Jianwei ;
Wang, Shu ;
Wang, Fuqiang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6142-6151
[27]   Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors [J].
Alì, G ;
Bini, D ;
Rionero, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) :572-587
[28]   The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma [J].
Yang, Jianwei ;
Wang, Shu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1829-1840
[29]   Lp-Lq-Lr estimates and minimal decay regularity for compressible Euler-Maxwell equations [J].
Xu, Jiang ;
Mori, Naofumi ;
Kawashima, Shuichi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (05) :965-981
[30]   RIGOROUS DERIVATION OF INCOMPRESSIBLE e-MHD EQUATIONS FROM COMPRESSIBLE EULER-MAXWELL EQUATIONS [J].
Peng, Yue-Jun ;
Wang, Shu .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :540-565