PERIODIC AND QUASI-PERIODIC ORBITS OF THE DISSIPATIVE STANDARD MAP

被引:6
作者
Celletti, Alessandra [1 ]
Di Ruzza, Sara [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2011年 / 16卷 / 01期
关键词
Dissipative standard map; Periodic orbits; Arnold's tongues;
D O I
10.3934/dcdsb.2011.16.151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present analytical and numerical investigations of the dynamics of the dissipative standard map. We first study the existence of periodic orbits by using a constructive version of the implicit function theorem; then, we introduce a parametric representation, which provides the interval of the drift parameter ensuring the existence of a periodic orbit with a given period. The determination of quasi periodic attractors is efficiently obtained using the parametric representation combined with a Newton's procedure, aimed to reduce the error of the approximate solution provided by the parametric representation. These methods allow us to relate the drift parameter of the periodic orbits to that of the invariant attractors, as well as to constrain the drift of a periodic orbit within Arnold's tongues in the parameter space.
引用
收藏
页码:151 / 171
页数:21
相关论文
共 17 条
  • [1] Arnold V. I., 1988, Dynamical Systems, VIII
  • [2] THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES
    AUBRY, S
    LEDAERON, PY
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) : 381 - 422
  • [3] Towards global models near homoclinic tangencies of dissipative diffeomorphisms
    Broer, H
    Simo, C
    Tatjer, JC
    [J]. NONLINEARITY, 1998, 11 (03) : 667 - 770
  • [4] Broer H. W., 1996, Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos
  • [5] Breakdown of invariant attractors for the dissipative standard map
    Calleja, Renato
    Celletti, Alessandra
    [J]. CHAOS, 2010, 20 (01)
  • [6] Celletti A, 2010, STABILITY AND CHAOS IN CELESTIAL MECHANICS, P1, DOI 10.1007/978-3-540-85146-2
  • [7] Singularities of periodic orbits near invariant curves
    Celletti, A
    Falcolini, C
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 170 (02) : 87 - 102
  • [8] Celletti A., 1998, REGUL CHAOTIC DYN, V3, P107, DOI [10.1070/rd1998v003n03ABEH000084, DOI 10.1070/RD1998V003N03ABEH000084]
  • [9] Cantori of the dissipative sawtooth map
    Celletti, Alessandra
    Guzzo, Massimiliano
    [J]. CHAOS, 2009, 19 (01)
  • [10] Regions of nonexistence of invariant tori for spin-orbit models
    Celletti, Alessandra
    MacKay, Robert
    [J]. CHAOS, 2007, 17 (04)