New Trends in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed

被引:16
作者
Echihabi, Karima [1 ]
Zoumpatianos, Kostas [2 ]
Palpanas, Themis [3 ,4 ]
机构
[1] Mohammed VI Polytech Univ, Ben Guerir, Morocco
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Univ Paris, Paris, France
[4] IUF, Paris, France
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2021年 / 14卷 / 12期
关键词
D O I
10.14778/3476311.3476407
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Similarity search is a core operation of many critical applications, involving massive collections of high-dimensional (high-d) objects. Objects can be data series, text, multimedia, graphs, database tables or deep network embeddings. In this tutorial, we revisit the similarity search problem in light of the recent advances in the field and the new big data landscape. We discuss key data science applications that require efficient high-d similarity search, we survey recent approaches and share surprising insights about their strengths and weaknesses, and we discuss open research problems, including the directions of AI-driven, progressive, and distributed high-d similarity search.
引用
收藏
页码:3198 / 3201
页数:4
相关论文
共 77 条
[1]  
Aggarwal CC, 2001, LECT NOTES COMPUT SC, V1973, P420
[2]  
Al-Mamun Abdullah, 2020, TUTORIAL LEARNED MUL, P1
[3]   code2vec: Learning Distributed Representations of Code [J].
Alon, Uri ;
Zilberstein, Meital ;
Levy, Omer ;
Yahav, Eran .
PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (POPL)
[4]  
[Anonymous], 2005, The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling
[5]  
[Anonymous], 2017, TVCG, DOI DOI 10.1109/TVCG.2016.2607714
[6]  
[Anonymous], 2004, SCG
[7]  
[Anonymous], 2014, PVLDB, DOI DOI 10.3389/FNINT.2014.00095
[8]  
[Anonymous], 1990, SIGMOD, DOI DOI 10.1145/93597.98741
[9]  
Arora Akhil, 2018, Proceedings of the VLDB Endowment, V11, P8
[10]  
Aumiiller Martin, 2017, SISAP