Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine

被引:56
|
作者
Luo, Chong [1 ]
Zhang, Xinle [2 ]
Meng, Xiangtian [1 ,3 ]
Zhu, Houwen [4 ]
Ni, Chunpeng [4 ]
Chen, Meihe [4 ]
Liu, Huanjun [1 ,4 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
[2] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Northeast Agr Univ, Sch Pubilc Adm & Law, Harbin 150030, Peoples R China
关键词
Digital soil mapping; Multitemporal synthetic; Landsat-8; Google Earth Engine; SPATIAL-DISTRIBUTION; NIR SPECTROSCOPY; SANJIANG PLAIN; FIELD; VARIABILITY; SENTINEL-2; REGRESSION; INDICATOR; CHINA; WATER;
D O I
10.1016/j.catena.2021.105842
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate assessment of the spatial distribution of soil organic matter (SOM) is of great significance for regional sustainable development, especially in fertile black soil areas. The present study proposed a regional-scale high spatial resolution (30 m) SOM mapping method based on multitemporal synthetic images. The study area is located on the Songnen Plain of Northeast China. First, all available Landsat 8 surface reflectance (SR) data during the bare soil period (April and May) from 2014 to 2019 in the study area were screened in the Google Earth Engine (GEE), and the cloud mask was constructed. The median, average, maximum, and minimum values of the image set were synthesized according to single-year multimonth, multiyear single-month and multiyear multimonth time ranges, and the spectral index of the synthesized image was constructed. Second, the bands and spectral indices of different synthetic images were used as input to establish a random forest (RF) model of SOM prediction, and the accuracies of different spatial prediction models of SOM were compared to evaluate the optimal regional remote sensing prediction model of SOM. The following results were show. 1) The use of the spectral index combined with the image band as input had a greater improvement in the accuracy of SOM prediction than the use of only the image band. 2) Compared to the average, maximum and minimum synthesized images, the median synthesized image had higher accuracy in SOM prediction. 3) More years of synthesized images provided more robust SOM prediction results. 4) May was the best time window for SOM mapping on the Songnen Plain. This study presents a large-scale and high spatial resolution SOM mapping method that is suitable for black soil areas in Northeast China and extends the application of GEE in digital soil mapping.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine
    Long, Tengfei
    Zhang, Zhaoming
    He, Guojin
    Jiao, Weili
    Tang, Chao
    Wu, Bingfang
    Zhang, Xiaomei
    Wang, Guizhou
    Yin, Ranyu
    REMOTE SENSING, 2019, 11 (05)
  • [32] Patterns, Trends and Drivers of Water Transparency in Sri Lanka Using Landsat 8 Observations and Google Earth Engine
    Somasundaram, Deepakrishna
    Zhang, Fangfang
    Ediriweera, Sisira
    Wang, Shenglei
    Yin, Ziyao
    Li, Junsheng
    Zhang, Bing
    REMOTE SENSING, 2021, 13 (11)
  • [33] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [34] A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine
    Guo, Linghui
    Zhao, Sha
    Gao, Jiangbo
    Zhang, Hebing
    Zou, Youfeng
    Xiao, Xiangming
    REMOTE SENSING, 2022, 14 (21)
  • [35] Mapping the Natural Distribution of Bamboo and Related Carbon Stocks in the Tropics Using Google Earth Engine, Phenological Behavior, Landsat 8, and Sentinel-2
    Venkatappa, Manjunatha
    Anantsuksomsri, Sutee
    Castillo, Jose Alan
    Smith, Benjamin
    Sasaki, Nophea
    REMOTE SENSING, 2020, 12 (18) : 1 - 23
  • [36] Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine
    Kolli, Meena Kumari
    Opp, Christian
    Karthe, Daniel
    Groll, Michael
    WATER, 2020, 12 (09)
  • [37] Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine
    Deines, Jillian M.
    Kendall, Anthony D.
    Crowley, Morgan A.
    Rapp, Jeremy
    Cardille, Jeffrey A.
    Hyndman, David W.
    REMOTE SENSING OF ENVIRONMENT, 2019, 233
  • [38] Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform
    Tian, Fuyou
    Wu, Bingfang
    Zeng, Hongwei
    Zhang, Xin
    Xu, Jiaming
    REMOTE SENSING, 2019, 11 (06)
  • [39] Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery
    Ganjirad, Mohammad
    Bagheri, Hossein
    ECOLOGICAL INFORMATICS, 2024, 80
  • [40] Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine
    Chang, Maoxiang
    Li, Peng
    Li, Zhenhong
    Wang, Houjie
    REMOTE SENSING, 2022, 14 (08)