Pullback attractors of 2D Navier-Stokes-Voigt equations with delay on a non-smooth domain

被引:6
作者
Su, Keqin [1 ,2 ]
Zhao, Mingxia [3 ]
Cao, Jie [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450046, Peoples R China
[3] Pingdingshan Univ, Coll Math & Informat Sci, Pingdingshan 467000, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2015年
关键词
Navier-Stokes-Voigt equation; continuous delay; distributed delay; pullback attractors; Lipschitz domain; BEHAVIOR;
D O I
10.1186/s13661-015-0505-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under suitable hypotheses on the continuous delay, distributed delay, and the initial data in this paper, the large-time behavior for the 2D Navier-Stokes-Voigt equations with continuous delay and distributed delay on the Lipschitz domain is studied. The existence of pullback attractors in the non-smooth domain was obtained via verifying some pullback dissipation and asymptotical compactness for the continuous process.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 23 条
  • [1] Navier-Stokes equation with hereditary viscosity
    Barbu, V
    Sritharan, SS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03): : 449 - 461
  • [2] Brown RM, 2000, INDIANA U MATH J, V49, P81
  • [3] Weak and strong solutions for the incompressible Navier-Stokes equations with damping
    Cai, Xiaojing
    Jiu, Quansen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 799 - 809
  • [4] Attractors for 2D-Navier-Stokes models with delays
    Caraballo, T
    Real, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) : 271 - 297
  • [5] Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2040): : 3181 - 3194
  • [6] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [7] Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain
    Celebi, A. O.
    Kalantarov, V. K.
    Polat, M.
    [J]. APPLICABLE ANALYSIS, 2009, 88 (03) : 381 - 392
  • [8] Chepyzhov VV, 2001, ATTRACTORS EQUATIONS
  • [9] ATTRACTORS FOR A DOUBLE TIME-DELAYED 2D-NAVIER-STOKES MODEL
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Planas, Gabriela
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (10) : 4085 - 4105
  • [10] Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations
    Garcia-Luengo, Julia
    Marin-Rubio, Pedro
    Real, Jose
    [J]. NONLINEARITY, 2012, 25 (04) : 905 - 930