共 30 条
Evaluation of Deep Network-based Methods for Crack Detection of Iron Ore Green Pellet
被引:5
作者:

Zhou, Shuyi
论文数: 0 引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China

Liu, Xiaoyan
论文数: 0 引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China

Chen, Yuru
论文数: 0 引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China

Sun, Xihan
论文数: 0 引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
机构:
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金:
中国国家自然科学基金;
关键词:
green pellet;
crack detection;
deep network;
image processing;
D O I:
10.2355/isijinternational.ISIJINT-2022-108
中图分类号:
TF [冶金工业];
学科分类号:
0806 ;
摘要:
Crack detection for iron ore green pellet is an essential step in the measuring process of drop strength, which is one of the important quality metrics of green pellet. However, current method for crack detection of green pellet is manual inspection, which is rather laborious, tedious and subjective. Although various deep network-based methods are proposed to automatically detect cracks in tunnel, pavement and wall, little effort has been made on pellet crack detection. Therefore, it is still unknown whether the current deep network-based methods can solve the crack pellet detection problem. In the present work, we perform comparison study to evaluate the performance of six state-of-the-art deep networks, using our green pellet dataset with various crack types and complex background. Comprehensive comparatives are conducted to evaluate the performance and computing efficiency of six deep networks on pellet crack detection. Moreover, task-driving comparison is performed to show what to extent the six deep networks affect the measuring accuracy of drop strength. Our experimental analyses demonstrate that CrackSegNet achieves better crack detection accuracy than other five networks (DeepCrack-Z, DeepCrack-L, U-net, CrackSegNet, GCUnet), and thereby performs better in the task of drop strength measurement. However, computing time needed by CrackSegNet (0.26 seconds per image) is longer than other networks (0.05-0.20 seconds per image) in processing one image with the size of 512x512. In future work, the performance of deep networks needs to be improved in crack detection accuracy as well as computing efficiency to ensure more accurate and fast measurement of pellet quality.
引用
收藏
页码:1694 / 1704
页数:11
相关论文
共 30 条
- [11] Effect of carboxymethyl cellulose on the drying dynamics and thermal cracking performance of iron ore green pellets[J]. POWDER TECHNOLOGY, 2014, 267 : 11 - 17Fan, Xiao-hui论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R ChinaYang, Gui-ming论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R ChinaChen, Xu-ling论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R ChinaHe, Xiang-ning论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R ChinaHuang, Xiao-xian论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R ChinaGao, Lu论文数: 0 引用数: 0 h-index: 0机构: Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
- [12] Degraded Image Semantic Segmentation With Dense-Gram Networks[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 782 - 795Guo, Dazhou论文数: 0 引用数: 0 h-index: 0机构: Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USAPei, Yanting论文数: 0 引用数: 0 h-index: 0机构: Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USAZheng, Kang论文数: 0 引用数: 0 h-index: 0机构: Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USAYu, Hongkai论文数: 0 引用数: 0 h-index: 0机构: Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA Univ Texas Rio Grande Valley, Dept Comp Sci, Edinburg, TX 78539 USA Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USALu, Yuhang论文数: 0 引用数: 0 h-index: 0机构: Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USAWang, Song论文数: 0 引用数: 0 h-index: 0机构: Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA Tianjin Univ, Coll Intelligence & Comp, Tianjin 300072, Peoples R China Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29201 USA
- [13] Deep learning based approach for the instance segmentation of clayey soil desiccation cracks[J]. COMPUTERS AND GEOTECHNICS, 2022, 146Han, Xiao-Le论文数: 0 引用数: 0 h-index: 0机构: Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USA Southeast Univ, Inst Geotech Engn, Nanjing, Jiangsu, Peoples R China Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USAJiang, Ning-Jun论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Inst Geotech Engn, Nanjing, Jiangsu, Peoples R China Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USAYang, Yu-Fei论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Transportat, Nanjing, Jiangsu, Peoples R China Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USAChoi, Jongseong论文数: 0 引用数: 0 h-index: 0机构: SUNY Korea, Dept Mech Engn, Incheon, South Korea SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USASingh, Devandra N.论文数: 0 引用数: 0 h-index: 0机构: Indian Inst Technol, Dept Civil Engn, Mumbai, Maharashtra, India Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USABeta, Priyanka论文数: 0 引用数: 0 h-index: 0机构: Indian Inst Technol, Dept Civil Engn, Mumbai, Maharashtra, India Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USADu, Yan-Jun论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Inst Geotech Engn, Nanjing, Jiangsu, Peoples R China Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USAWang, Yi-Jie论文数: 0 引用数: 0 h-index: 0机构: Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USA Univ Hawaii Manoa, Dept Civil & Environm Engn, Honolulu, HI USA
- [14] Sealed-Crack Detection Algorithm Using Heuristic Thresholding Approach[J]. JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2016, 30 (01)Kamaliardakani, Mojtaba论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R ChinaSun, Lu论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China Catholic Univ Amer, Dept Civil Engn, Washington, DC 20064 USA Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R ChinaArdakani, Mostafa K.论文数: 0 引用数: 0 h-index: 0机构: Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China State Univ New York, Sch Engn Technol, Farmingdale, NY 11735 USA Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China
- [15] A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]. CONSTRUCTION AND BUILDING MATERIALS, 2022, 321Kheradmandi, Narges论文数: 0 引用数: 0 h-index: 0机构: Babol Noshirvani Univ Technol, Fac Civil Engn, Highway & Transportat Grp, Babol, Iran Babol Noshirvani Univ Technol, Fac Civil Engn, Highway & Transportat Grp, Babol, Iran论文数: 引用数: h-index:机构:
- [16] Image-based Method for Measuring Pellet Size Distribution in the Stable Area of Disc Pelletizer[J]. ISIJ INTERNATIONAL, 2018, 58 (11) : 2088 - 2094Liu, Xiaoyan论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China Hunan Key Lab Intelligent Robot Technol Elect Mfg, Changsha 410082, Hunan, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R ChinaMao, Chuangang论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R ChinaSun, Wei论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China Hunan Key Lab Intelligent Robot Technol Elect Mfg, Changsha 410082, Hunan, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R ChinaWu, Xin论文数: 0 引用数: 0 h-index: 0机构: Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
- [17] DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. NEUROCOMPUTING, 2019, 338 : 139 - 153Liu, Yahui论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R ChinaYao, Jian论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R ChinaLu, Xiaohu论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R ChinaXie, Renping论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R ChinaLi, Li论文数: 0 引用数: 0 h-index: 0机构: Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China Wuhan Univ, Comp Vis & Remote Sensing CVRS Lab, Sch Remote Sensing & Informat Engn, Wuhan, Hubei, Peoples R China
- [18] Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. AUTOMATION IN CONSTRUCTION, 2019, 104 : 129 - 139Liu, Zhenqing论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R ChinaCao, Yiwen论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R ChinaWang, Yize论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R China Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R ChinaWang, Wei论文数: 0 引用数: 0 h-index: 0机构: Tokyo Inst Technol, Dept Architecture & Bldg Engn, Yokohama, Kanagawa, Japan Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, Wuhan, Hubei, Peoples R China
- [19] Effect of Ti-V Magnetite Concentrate Pellet on the Strength of Green Pellets and the Quality of Sinter by Composite Agglomeration Process (CAP)[J]. ISIJ INTERNATIONAL, 2021, 61 (08) : 2211 - 2219Lu, Yanan论文数: 0 引用数: 0 h-index: 0机构: Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R ChinaWu, Shengli论文数: 0 引用数: 0 h-index: 0机构: Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R ChinaZhou, Heng论文数: 0 引用数: 0 h-index: 0机构: Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R ChinaMa, Liming论文数: 0 引用数: 0 h-index: 0机构: Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R ChinaLiu, Zhengjian论文数: 0 引用数: 0 h-index: 0机构: Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R ChinaWang, Yang论文数: 0 引用数: 0 h-index: 0机构: Handan Steel CO Ltd, Ironmaking Dept, HBIS Grp, Handan 05615, Peoples R China Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 100083, Peoples R China
- [20] A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM[J]. CONSTRUCTION AND BUILDING MATERIALS, 2019, 204 : 244 - 254Luo, Qijun论文数: 0 引用数: 0 h-index: 0机构: Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China Civil Aviat Univ China, Coll Elect Informat & Automat, 2898 Jinbei Rd, Tianjin 300300, Peoples R China Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R ChinaGe, Baozhen论文数: 0 引用数: 0 h-index: 0机构: Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China Minist Educ, Key Lab Optoelect Informat Sci & Technol, Tianjin 300072, Peoples R China Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R ChinaTian, Qingguo论文数: 0 引用数: 0 h-index: 0机构: Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China Minist Educ, Key Lab Optoelect Informat Sci & Technol, Tianjin 300072, Peoples R China Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China