Non-defectivity of Grassmannian bundles over a curve

被引:2
作者
Choe, Insong [1 ]
Hitching, George H. [2 ]
机构
[1] Konkuk Univ, Dept Math, 1 Hwayang Dong, Seoul 143701, South Korea
[2] Hogskolen & Oslo Akershus, Postboks 4,St Olavs Plass, N-0130 Oslo, Norway
关键词
Orthogonal vector bundle; Grassmannian; curve; secant; Segre invariant; VECTOR-BUNDLES; SUBBUNDLES;
D O I
10.1142/S0129167X16400024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gr(2, E) be the Grassmann bundle of two-planes associated to a general bundle E over a curve X. We prove that an embedding of Gr(2, E) by a certain twist of the relative Plucker map is not secant defective. This yields a new and more geometric proof of the Hirschowitz-type bound on the isotropic Segre invariant for maximal isotropic sub-bundles of orthogonal bundles over X, analogous to those given for vector bundles and symplectic bundles in [I. Choe and G. H. Hitching, Secant varieties and Hirschowitz bound on vector bundles over a curve, Manuscripta Math. 133 (2010) 465-477, I. Choe and G. H. Hitching, Lagrangian sub-bundles of symplectic vector bundles over a curve, Math. Proc. Cambridge Phil. Soc. 153 (2012) 193-214]. From the non-defectivity, we also deduce an interesting feature of a general orthogonal bundle of even rank over X, contrasting with the classical and symplectic cases: a general maximal isotropic sub-bundle of maximal degree intersects at least one other such sub-bundle in positive rank.
引用
收藏
页数:15
相关论文
共 13 条
[1]  
Abo H, 2012, J ALGEBRAIC GEOM, V21, P1
[2]   Secant varieties of Grassmann varieties [J].
Catalisano, MV ;
Geramita, AV ;
Gimigliano, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :633-642
[3]   Maximal isotropic subbundles of orthogonal bundles of odd rank over a curve [J].
Choe, Insong ;
Hitching, George H. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (13)
[4]   A stratification on the moduli spaces of symplectic and orthogonal bundles over a curve [J].
Choe, Insong ;
Hitching, G. H. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (05)
[5]   Lagrangian subbundles of symplectic bundles over a curve [J].
Choe, Insong ;
Hitching, George H. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 :193-214
[6]   Secant varieties and Hirschowitz bound on vector bundles over a curve [J].
Choe, Insong ;
Hitching, George H. .
MANUSCRIPTA MATHEMATICA, 2010, 133 (3-4) :465-477
[7]  
HIRSCHOWITZ A, 1988, CR ACAD SCI I-MATH, V307, P153
[8]   Subbundles of symplectic and orthogonal vector bundles over curves [J].
Hitching, George H. .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (13-14) :1510-1517
[9]   A generalisation of Nagata's theorem on ruled surfaces [J].
Holla, YI ;
Narasimhan, MS .
COMPOSITIO MATHEMATICA, 2001, 127 (03) :321-332
[10]   MAXIMAL SUBBUNDLES OF RANK 2 VECTOR-BUNDLES ON CURVES [J].
LANGE, H ;
NARASIMHAN, MS .
MATHEMATISCHE ANNALEN, 1983, 266 (01) :55-72