Entire solutions in monostable reaction-advection-diffusion equations in infinite cylinders

被引:5
作者
Sheng, Wei-Jie [1 ]
Liu, Nai-Wei [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
关键词
Entire solution; Quasi-invariant manifold; Monostable; Infinite cylinder; TRAVELING-WAVE-FRONTS; FLAME PROPAGATION; POPULATION-DYNAMICS; ASYMPTOTIC-BEHAVIOR; STABILITY; EXISTENCE; SPEEDS; MODEL;
D O I
10.1016/j.na.2011.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with entire solutions of a monostable reaction-advection-diffusion equation in infinite cylinders without the condition f '(u) <= f '(0). By constructing a quasi-invariant manifold, we prove that there exist two classes of entire solutions. Furthermore, we show that one class of such entire solutions is unique up to space and time translation. (C) 2011 Elsevier Ltd. All rights reserved
引用
收藏
页码:3540 / 3547
页数:8
相关论文
共 42 条
[1]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[2]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[5]   STABILITY OF TRAVELING FRONTS IN A MODEL FOR FLAME PROPAGATION .1. LINEAR-ANALYSIS [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
ROQUEJOFFRE, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 117 (02) :97-117
[6]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[7]  
Berestycki H, 2008, DISCRETE CONT DYN-A, V21, P41
[8]  
Berestycki H, 2007, CONTEMP MATH, V446, P101
[9]   REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE DOMAINS [J].
Berestycki, Henri ;
Rossi, Luca .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) :19-61
[10]   Bistable Traveling Waves around an Obstacle [J].
Berestycki, Henri ;
Hamel, Francois ;
Matano, Hiroshi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (06) :729-788