On the "universal" N=2 supersymmetry of classical mechanics

被引:18
作者
Deotto, E
Gozzi, E
机构
[1] Univ Trieste, Dipartimento Fis Teor, I-34014 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2001年 / 16卷 / 15期
关键词
D O I
10.1142/S0217751X01004190
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper we continue the study of the geometrical features of a functional approach to classical mechanics proposed some time ago. In particular, we try to shed some light on a N = 2 "universal" supersymmetry which seems to have an interesting interplay with the concept of ergodicity of the system. To study the geometry better we make this susy local and clarify pedagogically several issues present in the literature. Secondly, in order to prepare the ground for a better understanding of its relation to ergodicity, we study the system on constant energy surfaces. We find that the procedure of constraining the system on these surfaces injects in it some local Grassmannian invariances and reduces the N = 2 global susy to an N = 1.
引用
收藏
页码:2709 / 2746
页数:38
相关论文
共 39 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]   Quantization and time [J].
Abrikosov, AA ;
Gozzi, E .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 :369-372
[3]   LOCALLY SUPERSYMMETRIC QUANTUM-MECHANICS [J].
ALVAREZ, E .
PHYSICAL REVIEW D, 1984, 29 (02) :320-322
[4]   THE 2 QUANTUM SYMMETRIES ASSOCIATED WITH A CLASSICAL SYMMETRY [J].
ALVAREZGAUME, L ;
BAULIEU, L .
NUCLEAR PHYSICS B, 1983, 212 (02) :255-267
[5]  
[Anonymous], 1996, HEAT KERNELS DIRAC O
[6]  
Arnold VI., 1968, Ergodic problems of classical mechanics
[7]   GAUGED BRST SYMMETRY AND THE OCCURRENCE OF HIGHER COCYCLES IN QUANTUM-FIELD THEORY [J].
BAULIEU, L ;
GROSSMAN, B ;
STORA, R .
PHYSICS LETTERS B, 1986, 180 (1-2) :95-100
[8]  
BEOTTO E, 2000, PHYS LETT B, V481, P315
[9]   PATH-INTEGRALS AND GEOMETRY OF TRAJECTORIES [J].
BLAU, M ;
KESKIVAKKURI, E ;
NIEMI, AJ .
PHYSICS LETTERS B, 1990, 246 (1-2) :92-98
[10]   LOCAL SUPERSYMMETRY FOR SPINNING PARTICLES [J].
BRINK, L ;
DESER, S ;
ZUMINO, B ;
DIVECCHIA, P ;
HOWE, P .
PHYSICS LETTERS B, 1976, 64 (04) :435-438