Retrospective analysis of the possibility of predicting the COVID-19 outbreak from Internet searches and social media data, China, 2020

被引:199
作者
Li, Cuilian [1 ,2 ]
Chen, Li Jia [3 ]
Chen, Xueyu [1 ,2 ]
Zhang, Mingzhi [1 ,2 ]
Pang, Chi Pui [1 ,2 ,3 ]
Chen, Haoyu [1 ,2 ]
机构
[1] Shantou Univ, Joint Shantou Int Eye Ctr, Shantou, Peoples R China
[2] Chinese Univ Hong Kong, Shantou, Peoples R China
[3] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Peoples R China
关键词
D O I
10.2807/1560-7917.ES.2020.25.10.2000199
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The peak of Internet searches and social media data about the coronavirus disease 2019 (COVID-19) outbreak occurred 10-14 days earlier than the peak of daily incidences in China. Internet searches and social media data had high correlation with daily incidences, with the maximum r> 0.89 in all correlations. The lag correlations also showed a maximum correlation at 8-12 days for laboratory-confirmed cases and 6-8 days for suspected cases.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 10 条
  • [1] [Anonymous], 2009, NATURE, DOI DOI 10.1038/nature07634
  • [2] Feng ZJ, 2020, CHINA CDC WEEKLY, V2, P113, DOI [10.3760/cma.j.issn.0254-6450.2020.02.003, 10.46234/ccdcw2020.032]
  • [3] Ghulam A, 2021, BIOSCI RES, V18, P47
  • [4] Majumder Maimuna S, 2016, JMIR Public Health Surveill, V2, pe30, DOI 10.2196/publichealth.5814
  • [5] Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level
    Marques-Toledo, Cecilia de Almeida
    Degener, Carolin Marlen
    Vinhal, Livia
    Coelho, Giovanini
    Meira, Wagner
    Codeco, Claudia Torres
    Teixeira, Mauro Martins
    [J]. PLOS NEGLECTED TROPICAL DISEASES, 2017, 11 (07):
  • [6] Digital epidemiology: assessment of measles infection through Google Trends mechanism in Italy
    Santangelo, O. E.
    Provenzano, S.
    Piazza, D.
    Giordano, D.
    Calamusa, G.
    Firenze, A.
    [J]. ANNALI DI IGIENE MEDICINA PREVENTIVA E DI COMUNITA, 2019, 31 (04): : 385 - 391
  • [7] High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea
    Shin, Soo-Yong
    Seo, Dong-Woo
    An, Jisun
    Kwak, Haewoon
    Kim, Sung-Han
    Gwack, Jin
    Jo, Min-Woo
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] Wilson N, 2009, EUROSURVEILLANCE, V14, P19
  • [9] WORLD HEALTH ORGANIZATION, NOV COR COVID 19 SIT
  • [10] Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study
    Wu, Joseph T.
    Leung, Kathy
    Leung, Gabriel M.
    [J]. LANCET, 2020, 395 (10225) : 689 - 697