ON A NONLINEAR SUBDIVISION SCHEME AVOIDING GIBBS OSCILLATIONS AND CONVERGING TOWARDS Cs FUNCTIONS WITH s > 1

被引:13
作者
Amat, S. [1 ]
Dadourian, K. [2 ]
Liandrat, J. [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Ecole Cent Marseille, Lab Anal Topol & Probabil, Marseille, France
关键词
Nonlinear subdivision scheme; limit function; regularity; stability; Gibbs phenomenon; MEDIAN-INTERPOLATION; MULTIRESOLUTION; REPRESENTATION;
D O I
10.1090/S0025-5718-2010-02434-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new nonlinear dyadic subdivision scheme eliminating the Gibbs oscillations close to discontinuities. Its convergence, stability and order of approximation are analyzed. It is proved that this scheme converges towards limit functions Holder continuous with exponent larger than 1.299. Numerical estimates provide a Holder exponent of 2.438. This subdivision scheme is the first one that simultaneously achieves the control of the Gibbs phenomenon and has limit functions with Holder exponent larger than 1.
引用
收藏
页码:959 / 971
页数:13
相关论文
共 22 条
[1]   On the stability of the PPH nonlinear multiresolution [J].
Amat, S ;
Liandrat, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 18 (02) :198-206
[2]   Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms [J].
Amat, S. ;
Dadourian, K. ;
Liandrat, J. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) :253-277
[3]   Tensor product multiresolution analysis with error control for compact image representation [J].
Amat, S ;
Aràndiga, F ;
Cohen, A ;
Donat, R .
SIGNAL PROCESSING, 2002, 82 (04) :587-608
[4]  
Amat S., 2006, CURVES SURFACES FITT, P1
[5]   Analysis of a new nonlinear subdivision scheme. Applications in image processing [J].
Amat, Sergio ;
Donat, Rosa ;
Liandrat, Jacques ;
Trillo, J. Carlos .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :193-225
[6]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[7]  
CATMULL EE, 1978, COMPUT AIDED DESIGN, V19, P350
[8]  
CHAIKIN GM, 1974, COMPUT GRAPHICS IMAG, V3, P346
[9]   Quasilinear subdivision schemes with applications to ENO interpolation [J].
Cohen, A ;
Dyn, N ;
Matei, B .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 15 (02) :89-116
[10]   Normal multiresolution approximation of curves [J].
Daubechies, I ;
Runborg, O ;
Sweldens, W .
CONSTRUCTIVE APPROXIMATION, 2004, 20 (03) :399-463