LATTICE DYNAMICS ON LARGE TIME SCALES AND DISPERSIVE EFFECTIVE EQUATIONS

被引:3
作者
Schweizer, Ben [1 ]
Theil, Florian [2 ]
机构
[1] TU Dortmund, Fak Math, D-44227 Dortmund, Nrw, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
lattice dynamics; continuum limit; dispersive effective equation; WAVE-PROPAGATION; HETEROGENEOUS MEDIA; MODELS;
D O I
10.1137/17M1162184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the long time behavior of waves in crystals. Starting from a linear wave equation on a discrete lattice with periodicity epsilon > 0, we derive the continuum limit equation for time scales of order epsilon(-2). The effective equation is a weakly dispersive wave equation of fourth order. Initial values with bounded support result in ring-like solutions, and we characterize the dispersive long time behavior of the radial profiles with a linearized KdV equation of third order.
引用
收藏
页码:3060 / 3086
页数:27
相关论文
共 18 条
  • [1] Abdulle A., 2016, MATH MODELS METHODS, V26, P2651
  • [2] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION: LONG-TIME EFFECTS
    Abdulle, Assyr
    Grote, Marcus J.
    Stohrer, Christian
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (03) : 1230 - 1257
  • [3] Well-posed Boussinesq paradigm with purely spatial higher-order derivatives
    Christov, CI
    Maugin, GA
    Velarde, MG
    [J]. PHYSICAL REVIEW E, 1996, 54 (04): : 3621 - 3638
  • [4] Dispersive homogenized models and coefficient formulas for waves in general periodic media
    Dohnal, T.
    Lamacz, A.
    Schweizer, B.
    [J]. ASYMPTOTIC ANALYSIS, 2015, 93 (1-2) : 21 - 49
  • [5] BLOCH-WAVE HOMOGENIZATION ON LARGE TIME SCALES AND DISPERSIVE EFFECTIVE WAVE EQUATIONS
    Dohnal, T.
    Lamacz, A.
    Schweizer, B.
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (02) : 488 - 513
  • [6] On the capability of generalized continuum theories to capture dispersion characteristics at the atomic scale
    Fafalis, D. A.
    Filopoulos, S. P.
    Tsamasphyros, G. J.
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2012, 36 : 25 - 37
  • [7] Non-local dispersive model for wave propagation in heterogeneous media: multi-dimensional case
    Fish, J
    Chen, W
    Nagai, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (03) : 347 - +
  • [8] Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case
    Fish, J
    Chen, W
    Nagai, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (03) : 331 - 346
  • [9] Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit
    Friesecke, G
    Pego, RL
    [J]. NONLINEARITY, 1999, 12 (06) : 1601 - 1627
  • [10] ENERGY TRANSPORT BY ACOUSTIC MODES OF HARMONIC LATTICES
    Harris, Lisa
    Lukkarinen, Jani
    Teufel, Stefan
    Theil, Florian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) : 1392 - 1418