Complex Projective Synchronization of Fractional Complex Systems Using Nonlinear Control Method

被引:0
作者
Yadav, Vijay K. [1 ]
Das, Subir [1 ]
Cafagna, Donato [2 ]
机构
[1] Indian Inst Technol, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE) | 2018年
关键词
Fractional derivative; Projective synchronization; Chaotic complex systems; Nonlinear control method; ANTI-SYNCHRONIZATION; LORENZ EQUATIONS; CHAOS; CALCULUS; REAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manuscript investigates the complex projective synchronization of two complex non-integer chaotic systems using a nonlinear control method. To this purpose, the nonlinear controller is designed on basis of Lyapunov stability theorems, applying a recent theorem stated for fractional dynamical systems. The simulation results confirm that the suggested approach allows to derive an effective nonlinear control function and to achieve projective chaos synchronization of the complex non-integer Lorenz system and the complex non-integer Lu system.
引用
收藏
页数:6
相关论文
共 33 条
[11]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[12]  
Heaviside Oliver., 1971, ELECTROMAGNETIC THEO
[13]  
Jiang C., HINDAWI ABSTRACT APP, V2014
[14]  
Koeller R. C., 1984, J APPL MECH, V51, P199
[15]   Application of fractional calculus to fluid mechanics [J].
Kulish, VV ;
Lage, JL .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (03) :803-806
[16]   Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability [J].
Li, Yan ;
Chen, YangQuan ;
Podlubny, Igor .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1810-1821
[17]   Complex Modified Hybrid Projective Synchronization of Different Dimensional Fractional-Order Complex Chaos and Real Hyper-Chaos [J].
Liu, Jian .
ENTROPY, 2014, 16 (12) :6195-6211
[18]   Anti-synchronization between different chaotic complex systems [J].
Liu, Ping ;
Liu, Shutang .
PHYSICA SCRIPTA, 2011, 83 (06)
[19]   Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters [J].
Liu, Shutang ;
Liu, Ping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) :3046-3055
[20]   Chaos in the fractional-order complex Lorenz system and its synchronization [J].
Luo, Chao ;
Wang, Xingyuan .
NONLINEAR DYNAMICS, 2013, 71 (1-2) :241-257