Complex Projective Synchronization of Fractional Complex Systems Using Nonlinear Control Method

被引:0
作者
Yadav, Vijay K. [1 ]
Das, Subir [1 ]
Cafagna, Donato [2 ]
机构
[1] Indian Inst Technol, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE) | 2018年
关键词
Fractional derivative; Projective synchronization; Chaotic complex systems; Nonlinear control method; ANTI-SYNCHRONIZATION; LORENZ EQUATIONS; CHAOS; CALCULUS; REAL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manuscript investigates the complex projective synchronization of two complex non-integer chaotic systems using a nonlinear control method. To this purpose, the nonlinear controller is designed on basis of Lyapunov stability theorems, applying a recent theorem stated for fractional dynamical systems. The simulation results confirm that the suggested approach allows to derive an effective nonlinear control function and to achieve projective chaos synchronization of the complex non-integer Lorenz system and the complex non-integer Lu system.
引用
收藏
页数:6
相关论文
共 33 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[4]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[5]  
Cafagna D, 2007, IEE IND ELECTRON M, V1, P35, DOI 10.1109/MIE.2007.901479
[6]   Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization [J].
Cafagna, Donato ;
Grassi, Giuseppe .
CHINESE PHYSICS B, 2015, 24 (08)
[7]   Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 68 (1-2) :117-128
[8]   Calculation of the tensile and flexural strength of disordered materials using fractional calculus [J].
Carpinteri, A ;
Cornetti, P ;
Kolwankar, KM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :623-632
[9]   Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme [J].
Chen, Diyi ;
Zhang, Runfan ;
Ma, Xiaoyi ;
Liu, Si .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :35-55
[10]   THE REAL AND COMPLEX LORENZ EQUATIONS AND THEIR RELEVANCE TO PHYSICAL SYSTEMS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1983, 7 (1-3) :126-134