WELL-POSEDNESS IN SOBOLEV SPACES OF THE TWO-DIMENSIONAL MHD BOUNDARY LAYER EQUATIONS WITHOUT VISCOSITY

被引:7
作者
Li, Wei-Xi [1 ,2 ]
Xu, Rui [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
基金
中国国家自然科学基金;
关键词
MHD boundary layer; well-posedness; Sobolev space; GLOBAL EXISTENCE; PRANDTL SYSTEM;
D O I
10.3934/era.2021082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the two-dimensional MHD Boundary layer system without hydrodynamic viscosity, and establish the existence and uniqueness of solutions in Sobolev spaces under the assumption that the tangential component of magnetic fields dominates. This gives a complement to the previous works of Liu-Xie-Yang [Comm. Pure Appl. Math. 72 (2019)] and Liu-WangXie-Yang [J. Funct. Anal. 279 (2020)], where the well-posedness theory was established for the MHD boundary layer systems with both viscosity and resistivity and with viscosity only, respectively. We use the pseudo-differential calculation, to overcome a new difficulty arising from the treatment of boundary integrals due to the absence of the diffusion property for the velocity.
引用
收藏
页码:4243 / 4255
页数:13
相关论文
共 24 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]   Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow [J].
Chen, Dongxiang ;
Wang, Yuxi ;
Zhang, Zhifei .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :1119-1142
[3]   Gevrey Hypoellipticity for a Class of Kinetic Equations [J].
Chen, Hua ;
Li, Wei-Xi ;
Xu, Chao-Jiang .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (04) :693-728
[4]   Well-Posedness of the Prandtl Equations Without Any Structural Assumption [J].
Dietert, Helge ;
Gerard-Varet, David .
ANNALS OF PDE, 2019, 5 (01)
[5]   Formal derivation and stability analysis of boundary layer models in MHD [J].
Gerard-Varet, D. ;
Prestipino, M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[6]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
[7]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[8]   A Note on Prandtl Boundary Layers [J].
Guo, Yan ;
Toan Nguyen .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) :1416-1438
[9]   Almost Global Existence for the Prandtl Boundary Layer Equations [J].
Ignatova, Mihaela ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :809-848
[10]   ON THE LOCAL WELL-POSEDNESS OF THE PRANDTL AND HYDROSTATIC EULER EQUATIONS WITH MULTIPLE MONOTONICITY REGIONS [J].
Kukavica, Igor ;
Masmoudi, Nader ;
Vicol, Vlad ;
Wong, Tak Kwong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (06) :3865-3890