Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG

被引:6
|
作者
Li, Hongqiang [1 ]
An, Zhixuan [1 ]
Zuo, Shasha [2 ]
Zhu, Wei [2 ]
Zhang, Zhen [3 ]
Zhang, Shanshan [1 ,4 ]
Zhang, Cheng [1 ]
Song, Wenchao [1 ]
Mao, Quanhua [1 ]
Mu, Yuxin [1 ]
Li, Enbang [5 ]
Prades Garcia, Juan Daniel [6 ]
机构
[1] Tiangong Univ, Sch Elect & Elect Engn, Tianjin Key Lab Optoelect Detect Technol & Syst, Tianjin 300387, Peoples R China
[2] Tianjin Prod Qual Inspect Technol Res Inst, Text Fiber Inspect Ctr, Tianjin 300192, Peoples R China
[3] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[4] Nankai Univ, Inst Modern Opt, Tianjin Key Lab Optoelect Sensor & Sensing Networ, Tianjin 300071, Peoples R China
[5] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW 2522, Australia
[6] Univ Barcelona UB, Inst Nanosci & Nanotechnol IN2UB, E-08028 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
biomedical monitoring; cloud computing; ECG science popularization; fabric electrodes; residual network;
D O I
10.3390/s21186043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Heart disease is the leading cause of death for men and women globally. The residual network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our understanding of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based on an improved ResNet for a wearable ECG. The system hardware consists of a wearable ECG with conductive fabric electrodes, a wireless ECG acquisition module, a mobile terminal App, and a cloud diagnostic platform. The algorithm adopted in this study is based on an improved ResNet for the rapid classification of different types of arrhythmia. First, we visualize ECG data and convert one-dimensional ECG signals into two-dimensional images using Gramian angular fields. Then, we improve the ResNet-50 network model, add multistage shortcut branches to the network, and optimize the residual block. The ReLu activation function is replaced by a scaled exponential linear units (SELUs) activation function to improve the expression ability of the model. Finally, the images are input into the improved ResNet network for classification. The average recognition rate of this classification algorithm against seven types of arrhythmia signals (atrial fibrillation, atrial premature beat, ventricular premature beat, normal beat, ventricular tachycardia, atrial tachycardia, and sinus bradycardia) is 98.3%.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] ARTIFICIAL INTELLIGENCE-ENABLED ECG ALGORITHM FOR THE SCREENING OF DIABETES
    Sharma, Abhinav
    Giannetti, Nadia
    Buckridge, David
    Ni, Jiayi
    Thao Huynh
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3542 - 3542
  • [2] Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification
    Han, Changho
    Kang, Ki-Woon
    Kim, Tae Young
    Uhm, Jae-Sun
    Park, Je-Wook
    Jung, In Hyun
    Kim, Minkwan
    Bae, SungA
    Lim, Hong-Seok
    Yoon, Dukyong
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [3] An artificial intelligence-enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the 'Turing test'?
    Kashou, Anthony H.
    Mulpuru, Siva K.
    Deshmukh, Abhishek J.
    Ko, Wei-Yin
    Attia, Zachi I.
    Carter, Rickey E.
    Friedman, Paul A.
    Noseworthy, Peter A.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (03): : 164 - 170
  • [4] AN ARTIFICIAL INTELLIGENCE-ENABLED ECG ALGORITHM FOR LEFT VENTRICULAR DIASTOLIC FUNCTION ASSESSMENT
    Lee, Eunjung
    Ito, Saki
    Kane, Garvan C.
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Attia, Zachi Itzhak
    Oh, Jae K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 4023 - 4023
  • [5] Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology
    Anthony H. Kashou
    Adam M. May
    Peter A. Noseworthy
    Current Cardiology Reports, 2020, 22
  • [6] Artificial Intelligence-enabled ECG: Physiologic and Pathophysiologic Insights and Implications
    Kashou, Anthony H.
    Adedinsewo, Demilade A.
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    COMPREHENSIVE PHYSIOLOGY, 2022, 12 (03) : 3417 - 3424
  • [7] Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology
    Kashou, Anthony H.
    May, Adam M.
    Noseworthy, Peter A.
    CURRENT CARDIOLOGY REPORTS, 2020, 22 (08)
  • [8] Identification and risk stratification of coronary disease by artificial intelligence-enabled ECG
    Awasthi, Samir
    Sachdeva, Nikhil
    Gupta, Yash
    Anto, Ausath G.
    Asfahan, Shahir
    Abbou, Ruben
    Bade, Sairam
    Sood, Sanyam
    Hegstrom, Lars
    Vellanki, Nirupama
    Alger, Heather M.
    Babu, Melwin
    Medina-Inojosa, Jose R.
    Mccully, Robert B.
    Lerman, Amir
    Stampehl, Mark
    Barve, Rakesh
    Attia, Zachi I.
    Friedman, Paul A.
    Soundararajan, Venky
    Lopez-Jimenez, Francisco
    ECLINICALMEDICINE, 2023, 65
  • [9] An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm
    Sheng-Nan Chang
    Yu-Heng Tseng
    Jien-Jiun Chen
    Fu-Chun Chiu
    Chin-Feng Tsai
    Juey-Jen Hwang
    Yi-Chih Wang
    Chia-Ti Tsai
    European Journal of Medical Research, 27
  • [10] An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm
    Chang, Sheng-Nan
    Tseng, Yu-Heng
    Chen, Jien-Jiun
    Chiu, Fu-Chun
    Tsai, Chin-Feng
    Hwang, Juey-Jen
    Wang, Yi-Chih
    Tsai, Chia-Ti
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2022, 27 (01)