Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrella patens

被引:15
作者
Wise, Hua Zhang [1 ]
Saxena, Inder M. [1 ]
Brown, R. Malcolm, Jr. [1 ]
机构
[1] Univ Texas Austin, Sect Mol Genet & Microbiol, Austin, TX 78712 USA
关键词
Cellulose synthase; CesA; Cellulose biosynthesis; Homologous recombination; Physcomitrella patens; CATALYTIC SUBUNIT; MOSS; COMPLEXES; BIOSYNTHESIS; EXPRESSION; VISUALIZATION; ORGANIZATION; DUPLICATION; EVOLUTION; PLANTS;
D O I
10.1007/s10570-010-9479-6
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Analysis of cellulose biosynthesis using molecular approaches has been successful in identifying genes in many cellulose-producing organisms, yet the mechanism of cellulose biosynthesis still remains to be understood. We are interested in developing the moss Physcomitrella patens as a useful system for the study of cellulose biosynthesis. This moss affords a number of advantages including a haploid dominated gametophyte and a very high efficiency of homologous recombination in its nuclear DNA for constructing gene knockouts. In addition, P. patens has only a primary cell wall unlike Arabidopsis thaliana, which has both a primary and a secondary cell wall. We identified two full-length cellulose synthase (CesA) genes of P. patens, PpCesA6 and PpCesA7 from an EST database and have analyzed the genomic sequences. PpCesA6 and PpCesA7 show high similarity to each other, both at the cDNA and genomic DNA levels. Single and double knockouts of PpCesA6 and PpCesA7 were generated and screened for phenotypic changes. While the PpCesA6 and PpCesA7 single knockouts did not show any obvious phenotypic differences from the wild-type, the double knockout had significantly reduced stem length. These results suggest that PpCesA6 and PpCesA7 probably have a very similar role in cellulose biosynthesis and their functions may be redundant. Additionally, their roles may overlap with the other P. patens CesAs as observed for CesAs involved in primary cell wall biosynthesis in A. thaliana.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 49 条
[1]   Cellulose synthesis in maize:: isolation and expression analysis of the cellulose synthase (CesA) gene family [J].
Appenzeller, L ;
Doblin, M ;
Barreiro, R ;
Wang, HY ;
Niu, XM ;
Kollipara, K ;
Carrigan, L ;
Tomes, D ;
Chapman, M ;
Dhugga, KS .
CELLULOSE, 2004, 11 (3-4) :287-299
[2]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[3]   The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements [J].
Ashton, NW ;
Champagne, CEM ;
Weiler, T ;
Verkoczy, LK .
NEW PHYTOLOGIST, 2000, 146 (03) :391-402
[4]   The cellulose synthase gene of Dictyostelium [J].
Blanton, RL ;
Fuller, D ;
Iranfar, N ;
Grimson, MJ ;
Loomis, WF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (05) :2391-2396
[5]  
Brown R M., 1990, Experimental phycology: cell walls and surfaces, reproduction, P19
[6]   CELLULOSE MICROFIBRILS - VISUALIZATION OF BIOSYNTHETIC AND ORIENTING COMPLEXES IN ASSOCIATION WITH PLASMA-MEMBRANE [J].
BROWN, RM ;
MONTEZINOS, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (01) :143-147
[7]   CELLULOSE BIOSYNTHESIS IN ACETOBACTER-XYLINUM - VISUALIZATION OF SITE OF SYNTHESIS AND DIRECT MEASUREMENT OF INVIVO PROCESS [J].
BROWN, RM ;
WILLISON, JHM ;
RICHARDSON, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (12) :4565-4569
[8]   STRUCTURAL MODELS OF PRIMARY-CELL WALLS IN FLOWERING PLANTS - CONSISTENCY OF MOLECULAR-STRUCTURE WITH THE PHYSICAL-PROPERTIES OF THE WALLS DURING GROWTH [J].
CARPITA, NC ;
GIBEAUT, DM .
PLANT JOURNAL, 1993, 3 (01) :1-30
[9]   Engineered GFP as a vital reporter in plants [J].
Chiu, WL ;
Niwa, Y ;
Zeng, W ;
Hirano, T ;
Kobayashi, H ;
Sheen, J .
CURRENT BIOLOGY, 1996, 6 (03) :325-330
[10]   Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6 [J].
Desprez, T ;
Vernhettes, S ;
Fagard, M ;
Refrégier, G ;
Desnos, T ;
Aletti, E ;
Py, N ;
Pelletier, S ;
Höfte, H .
PLANT PHYSIOLOGY, 2002, 128 (02) :482-490