Antifouling performance of spiral wound type module made of carbon nanotubes/polyamide composite RO membrane for seawater desalination

被引:28
作者
Fajardo-Diaz, Juan L. [1 ]
Morelos-Gomez, Aaron [1 ,2 ]
Cruz-Silva, Rodolfo [1 ,2 ]
Matsumoto, Akito [1 ]
Ueno, Yutaka [1 ]
Takeuchi, Norihiro [1 ]
Kitamura, Kotaro [1 ]
Miyakawa, Hiroki [1 ]
Tejima, Syogo [3 ]
Takeuchi, Kenji [1 ,2 ]
Tsuzuki, Koichi [1 ]
Endo, Morinobu [1 ,2 ]
机构
[1] Shinshu Univ, Global Aqua Innovat Ctr, Nagano, Japan
[2] Shinshu Univ, Res Initiat Supra Mat, 4-17-1 Wakasato, Nagano 3808553, Japan
[3] Res Org Informat Sci & Technol, Shinagawa Ku, 2-32-3 Kitashinagawa, Tokyo 1400001, Japan
基金
日本科学技术振兴机构;
关键词
Green desalination technology; Reverse osmosis; Carbon nanotube-polyamide membrane; Antifouling industrial module; THIN-FILM COMPOSITE; REVERSE-OSMOSIS MEMBRANES; SURFACE-ROUGHNESS; NANOTUBES; DYNAMICS; BEHAVIOR; SYSTEM; ENERGY; LAYER;
D O I
10.1016/j.desal.2021.115445
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Robust nanocomposite reverse osmosis (RO) module was assembled using crosslinked polyamide (PA) and carbon nanotubes (CNT) membranes, and their fouling resistance in real seawater desalination conditions was evaluated. The CNT-PA nanocomposite membrane was used to build a 2 in. and 4 in. RO module. The modules were tested for fouling in the laboratory using bovine serum albumin (BSA) dissolved in simulated seawater. The synthesis of the crosslinked CNT polyamide structure resulted in a lower foulant interaction and high salt rejection rates (99.87 wt%). The RO-laboratory scaled modules showed excellent antifouling behavior compared with commercial antifouling membranes, maintaining a continuous operation without substantial pressure drop variations. Pilot-plant tests with real seawater were performed at the water plaza facility, Kitakyushu city, Japan. A RO industrial vessel built with CNT-PA nanocomposite modules showed superior antifouling performance with a stable operation for more than 100 days due to changes in surface charge and superficial fouling blocking. In contrast, antifouling commercial vessel showed 2.3 times higher foulant deposition. These CNT-PA nano composites RO antifouling modules for uninterrupted operation performance are ideal for desalination plants because they require less operation maintenance than commercial membranes, promoting green desalination technology, which is becoming increasingly important due to current environmental concerns.
引用
收藏
页数:13
相关论文
共 61 条
[1]   Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms [J].
Banerjee, Indrani ;
Pangule, Ravindra C. ;
Kane, Ravi S. .
ADVANCED MATERIALS, 2011, 23 (06) :690-718
[2]   Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions [J].
Briggs, Nicholas M. ;
Weston, Javen S. ;
Li, Brian ;
Venkataramani, Deepika ;
Aichele, Clint P. ;
Harwell, Jeffrey H. ;
Crossley, Steven P. .
LANGMUIR, 2015, 31 (48) :13077-13084
[3]   Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study [J].
Bucs, Sz. S. ;
Radu, A. I. ;
Lavric, V. ;
Vrouwenvelder, J. S. ;
Picioreanu, C. .
DESALINATION, 2014, 343 :26-37
[4]  
Connor R, 2015, WORLD WATER DEV REPO
[5]   New Insights in the Natural Organic Matter Fouling Mechanism of Polyamide and Nanocomposite Multiwalled Carbon Nanotubes-Polyamide Membranes [J].
Cruz-Silva, Rodolfo ;
Takizawa, Yoshihiro ;
Nakaruk, Auppatham ;
Katouda, Michio ;
Yamanaka, Ayaka ;
Ortiz-Medina, Josue ;
Morelos-Gomez, Aaron ;
Tejima, Syogo ;
Obata, Michiko ;
Takeuchi, Kenji ;
Noguchi, Toru ;
Hayashi, Takuya ;
Terrones, Mauricio ;
Endo, Morinobu .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (11) :6255-6263
[6]  
Cruz-Silva R, 2016, MRS ADV, V1, P1469, DOI 10.1557/adv.2016.232
[7]   Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials [J].
Cychosz, Katie A. ;
Thommes, Matthias .
ENGINEERING, 2018, 4 (04) :559-566
[8]   Towards enhanced antifouling and flux performances of thin-film composite forward osmosis membrane via constructing a sandwich-like carbon nanotubes-coated support [J].
Deng, Luyao ;
Wang, Qun ;
An, Xiaochan ;
Li, Zhuangzhi ;
Hu, Yunxia .
DESALINATION, 2020, 479
[9]   Imposing accurate wall boundary conditions in corrective-matrix-based moving particle semi-implicit method for free surface flow [J].
Duan, Guangtao ;
Matsunaga, Takuya ;
Yamaji, Akifumi ;
Koshizuka, Seiichi ;
Sakai, Mikio .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (01) :148-175
[10]   The global status of desalination: An assessment of current desalination technologies, plants and capacity [J].
Eke, Joyner ;
Yusuf, Ahmed ;
Giwa, Adewale ;
Sodiq, Ahmed .
DESALINATION, 2020, 495