Anti-synchronization of Systems with Unknown Parameters and Parameters Identification

被引:0
作者
Ma, Mihua [1 ]
Lin, Meili [1 ]
机构
[1] Zhangzhou Normal Univ, Dept Math, Zhangzhou 363000, Peoples R China
来源
2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009) | 2009年
关键词
Anti-synchronization; unknown parameters; parameters identification; new chaotic system; PROJECTIVE SYNCHRONIZATION;
D O I
10.1109/IWCFTA.2009.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Anti-synchronization of two identical chaotic systems with unknown parameters and unknown parameters identification are discussed. A chaotic system with unknown parameters is considered as master system, and a slave system containing the estimated values of unknown parameters of the master system is constructed. We design some controllers consisting of adaptive controller and the update law of estimation parameters to make the master-slave systems achieve anti-synchronization. Then the negatives of the estimated values can converge to the exact values of unknown parameters of the master system. Therefore, the unknown parameters of the master system can be identified. A new chaotic system is taken as example to show that the presented method can give a result of high accuracy.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 20 条
  • [1] A new synchronization principle for a class of Lur'e systems with applications in secure communication
    Bowong, S
    Kakmeni, FMM
    Koina, R
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (07): : 2477 - 2491
  • [2] Adaptive control for anti-synchronization of Chua's chaotic system
    Hu, J
    Chen, SH
    Chen, L
    [J]. PHYSICS LETTERS A, 2005, 339 (06) : 455 - 460
  • [3] Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
    Kocarev, L
    Parlitz, U
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1816 - 1819
  • [4] KURAMOTO Y, 1980, CHEM OSCILLATIONS WA
  • [5] An observer-based anti-synchronization
    Li, GH
    Zhou, SP
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 495 - 498
  • [6] Anti-synchronization in different chaotic systems
    Li, Guo-Hui
    Zhou, Shi-Ping
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 516 - 520
  • [7] Anti-synchronization of two different chaotic systems
    Li, Wenlin
    Chen, Xiuqin
    Zhiping, Shen
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3747 - 3750
  • [8] A new chaotic attractor
    Liu, CX
    Liu, T
    Liu, L
    Liu, K
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (05) : 1031 - 1038
  • [9] Phase synchronization in the forced Lorenz system
    Park, EH
    Zaks, MA
    Kurths, J
    [J]. PHYSICAL REVIEW E, 1999, 60 (06): : 6627 - 6638
  • [10] Parlitz U, 1992, INT J BIFURCAT CHAOS, V2, P973, DOI 10.1142/S0218127492000823