Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut (Arachis hypogaea L.)

被引:7
|
作者
Wan, Liyun [1 ,2 ,3 ]
Ren, Weifang [1 ,2 ,3 ]
Miao, Haocui [4 ]
Zhang, Juncheng [5 ]
Fang, Jiahai [1 ,2 ,3 ]
机构
[1] Jiangxi Agr Univ, Minist Educ, Key Lab Crop Physiol Ecol & Genet Breeding, Nanchang, Jiangxi, Peoples R China
[2] Southern Reg Collaborat Innovat Ctr Grain & Oil C, Nanchang, Jiangxi, Peoples R China
[3] Jiangxi Agr Univ, Coll Agron, Nanchang, Jiangxi, Peoples R China
[4] Xinjiang Acad Agr Sci, Inst Crop Germplasm Resource, Urumqi, Peoples R China
[5] Huazhong Agr Univ, Wuhan, Peoples R China
关键词
Peanut; AhMST; Synteny; Expression; Association analysis; MEDIATES H+-SYMPORT; FUNCTIONAL-ANALYSIS; ARABIDOPSIS; DUPLICATION; MYOINOSITOL; TONOPLAST; PROTEIN; POLLEN; ATSTP1; CELLS;
D O I
10.1007/s13205-020-2123-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut (Arachis hypogaea L.)
    Liyun Wan
    Weifang Ren
    Haocui Miao
    Juncheng Zhang
    Jiahai Fang
    3 Biotech, 2020, 10
  • [2] Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.)
    Huang, RuoLan
    Xiao, Dong
    Wang, Xin
    Zhan, Jie
    Wang, AiQing
    He, LongFei
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [3] Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.)
    RuoLan Huang
    Dong Xiao
    Xin Wang
    Jie Zhan
    AiQing Wang
    LongFei He
    BMC Plant Biology, 22
  • [4] Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.)
    Zhang, Yanfeng
    Cao, Minxuan
    Li, Qiuzhi
    Yu, Fagang
    PLOS ONE, 2024, 19 (07):
  • [5] Genome-wide identification and expression analysis of auxin response factors in peanut (Arachis hypogaea L.)
    Li, Peipei
    Ma, Qian
    Qu, Chengxin
    Zhu, Shuliang
    Zhao, Kunkun
    Ma, Xingli
    Li, Zhongfeng
    Zhang, Xingguo
    Gong, Fangping
    Yin, Dongmei
    PEERJ, 2021, 9
  • [6] Genome-wide Identification, Evolutionary and Expression Analyses of CrRLK1L Gene Family in Peanut (Arachis hypogaea L.)
    Qiao, Qinghua
    Fu, Xuezhen
    Ren, Zhenxin
    Qiao, Wei
    Xiao, Dong
    He, Longfei
    TROPICAL PLANT BIOLOGY, 2024, 17 (01) : 24 - 41
  • [7] Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.)
    Xingguo Zhang
    Xingli Ma
    Longlong Ning
    Zhongfeng Li
    Kunkun Zhao
    Ke Li
    Jialin He
    Dongmei Yin
    BMC Genomics, 20
  • [8] Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.)
    Zhang, Xingguo
    Ma, Xingli
    Ning, Longlong
    Li, Zhongfeng
    Zhao, Kunkun
    Li, Ke
    He, Jialin
    Yin, Dongmei
    BMC GENOMICS, 2019, 20 (01)
  • [9] Genome-wide identification of mlo genes in the cultivated peanut (Arachis hypogaea L.)
    Traore, Sy Mamadou
    Han, Suoyi
    Binagwa, Papias
    Xu, Wen
    Chen, Xiangyu
    Liu, Fengzhen
    He, Guohao
    EUPHYTICA, 2021, 217 (04)
  • [10] Genome-wide identification and expression of SAUR gene family in peanut (Arachis hypogaea L.) and functional identification of AhSAUR3 in drought tolerance
    Yiyang Liu
    Lina Xiao
    Jingxian Chi
    Rongchong Li
    Yan Han
    Feng Cui
    Zhenying Peng
    Shubo Wan
    Guowei Li
    BMC Plant Biology, 22