Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space

被引:34
作者
Yang, Xuehua [1 ]
Qiu, Wenlin [2 ]
Chen, Haifan [2 ]
Zhang, Haixiang [1 ]
机构
[1] Hunan Univ Technol, Sch Sci, Zhuzhou 412007, Hunan, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional nonlocal evolution equation; BDF2 ADI Galerkin method; Second-order convolution quadrature rule; Stability and convergence; Numerical experiments; PARABOLIC INTEGRODIFFERENTIAL EQUATION; IMPLICIT DIFFERENCE SCHEME; SPLINE COLLOCATION METHODS; WEAKLY SINGULAR KERNEL; NUMERICAL-SOLUTION; TIME; DIFFUSION; DISCRETIZATION;
D O I
10.1016/j.apnum.2021.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyze a new method for the solution of the three-dimensional evolutionary equation with a nonlocal term. Then the method combines Galerkin finite element methods (FEMs) for the spatial discretization with an alternating direction implicit (ADI) algorithm based on the second-order backward differentiation formula (BDF2), where the Riemann-Liouville (R-L) integral term is approximated via second-order convolution quadrature (CQ) rule. The L-2-norm stability and convergence are proved. Numerical results confirm the predicted space-time convergence rates. (C) 2021 Published by Elsevier B.V. on behalf of IMACS.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 37 条
[1]   FINITE-ELEMENT APPROXIMATION OF A PARABOLIC INTEGRODIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL [J].
CHEN, C ;
THOMEE, V ;
WAHLBIN, LB .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :587-602
[2]   A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation [J].
Chen, Hongbin ;
Xu, Da ;
Cao, Jiliang ;
Zhou, Jun .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (05) :1100-1117
[3]   A backward Euler alternating direction implicit difference scheme for the three-dimensional fractional evolution equation [J].
Chen, Hongbin ;
Xu, Da ;
Cao, Jiliang ;
Zhou, Jun .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (03) :938-958
[4]   A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation [J].
Chen, Hongbin ;
Xu, Da ;
Peng, Yulong .
APPLIED MATHEMATICAL MODELLING, 2017, 41 :54-67
[5]   A Compact Difference Scheme for an Evolution Equation with a Weakly Singular Kernel [J].
Chen, Hongbin ;
Xu, Da .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (04) :559-572
[6]   ANALYSIS OF SOME GALERKIN SCHEMES FOR SOLUTION OF NONLINEAR TIME-DEPENDENT PROBLEMS [J].
DENDY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :541-565
[7]   AN ALTERNATING DIRECTION GALERKIN METHOD FOR A CLASS OF 2ND-ORDER HYPERBOLIC-EQUATIONS IN 2 SPACE VARIABLES [J].
FERNANDES, RI ;
FAIRWEATHER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (05) :1265-1281
[8]   Alternating Direction Implicit Galerkin Methods for an Evolution Equation with a Positive-Type Memory Term [J].
Khebchareon, Morrakot ;
Pani, Amiya K. ;
Fairweather, Graeme .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) :1166-1188
[9]   Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method [J].
Larsson, S ;
Thomee, V ;
Wahlbin, LB .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :45-71
[10]   Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation [J].
Li, Limei ;
Xu, Da ;
Luo, Man .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 :471-485