Bound states in the continuum and strong phase resonances in integrated Gires-Tournois interferometer

被引:36
作者
Bykov, Dmitry A. [1 ,2 ]
Bezus, Evgeni A. [1 ]
Doskolovich, Leonid L. [1 ,2 ]
机构
[1] Russian Acad Sci, Branch Fed Sci Res Ctr Crystallog & Photon, Image Proc Syst Inst, 151 Molodogvardeyskaya St, Samara 443001, Russia
[2] Samara Natl Res Univ, 34 Moskovskoye Shosse, Samara 443086, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
bound states in the continuum; resonance; mode coupling; integrated optics; TRANSMISSION; MATRIX; WAVES; LIGHT;
D O I
10.1515/nanoph-2019-0316
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photonic bound states in the continuum (BICs) are eigenmodes with an infinite lifetime, which coexist with a continuous spectrum of radiating waves. BICs are not only of great theoretical interest but also have a wide range of practical applications, e.g. in the design of optical resonators. Here, we study this phenomenon in a new integrated nanophotonic element consisting of a single dielectric ridge terminating an abruptly ended slab waveguide. This structure can be considered as an on-chip analog of the Gires-Tournois interferometer (GTI). We demonstrate that the proposed integrated structure supports high-Q phase resonances and robust BICs. We develop a simple but extremely accurate coupled-wave model that clarifies the physics of BIC formation and enables predicting BIC locations. The developed model shows that the studied BICs are topologically protected and describes the strong phase resonance effect that occurs when two BICs with opposite topological charges annihilate.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 48 条
[1]  
[Anonymous], PHYS REV A
[2]   Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide [J].
Bezus, Evgeni A. ;
Bykov, Dmitry A. ;
Doskolovich, Leonid L. .
PHOTONICS RESEARCH, 2018, 6 (11) :1084-1093
[3]   Fano resonances in photonic crystal slabs near optical bound states in the continuum [J].
Blanchard, Cedric ;
Hugonin, Jean-Paul ;
Sauvan, Christophe .
PHYSICAL REVIEW B, 2016, 94 (15)
[4]   Propagating bound states in the continuum in dielectric gratings [J].
Bulgakov, E. N. ;
Maksimov, D. N. ;
Semina, P. N. ;
Skorobogatov, S. A. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (06) :1218-1222
[5]   Avoided crossings and bound states in the continuum in low-contrast dielectric gratings [J].
Bulgakov, Evgeny N. ;
Maksimov, Dmitrii N. .
PHYSICAL REVIEW A, 2018, 98 (05)
[6]   Topological Bound States in the Continuum in Arrays of Dielectric Spheres [J].
Bulgakov, Evgeny N. ;
Maksimov, Dmitrii N. .
PHYSICAL REVIEW LETTERS, 2017, 118 (26)
[7]   Bloch bound states in the radiation continuum in a periodic array of dielectric rods [J].
Bulgakov, Evgeny N. ;
Sadreev, Almas F. .
PHYSICAL REVIEW A, 2014, 90 (05)
[8]   Bound states in the continuum in photonic waveguides inspired by defects [J].
Bulgakov, Evgeny N. ;
Sadreev, Almas F. .
PHYSICAL REVIEW B, 2008, 78 (07)
[9]   ON THE USE OF THE FOURIER MODAL METHOD FOR CALCULATION OF LOCALIZED EIGENMODES OF INTEGRATED OPTICAL RESONATORS [J].
Bykov, D. A. ;
Doskolovich, L. L. .
COMPUTER OPTICS, 2015, 39 (05) :663-673
[10]   Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings [J].
Bykov, Dmitry A. ;
Bezus, Evgeni A. ;
Doskolovich, Leonid L. .
PHYSICAL REVIEW A, 2019, 99 (06)