Geology and genesis of the Xiaguan Ag-Pb-Zn orefield in Qinling orogen, Henan province, China: Fluid inclusion and isotope constraints

被引:13
|
作者
Zhang, Jing [1 ]
Chen, Yanjing [2 ]
Su, Qiangwei [1 ]
Zhang, Xu [3 ]
Xiang, Shihong [3 ]
Wang, Qisong [1 ]
机构
[1] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Beijing 100083, Peoples R China
[2] Peking Univ, Open Lab Orogen & Crustal Evolut, Beijing 100871, Peoples R China
[3] Henan Prov Nonferrous Met Geol & Mineral Resource, Zhengzhou 450016, Peoples R China
关键词
Xiaguan Ag-Pb-Zn orefield; Geology and geochemistry; CMF model; Orogenic-type deposits; Qinling orogen; XIAOQINLING GOLD DISTRICT; ZHAIWA MO-CU; LA-ICP-MS; NORTH CHINA; U-PB; DEPOSIT; GEOCHEMISTRY; GEOCHRONOLOGY; METALLOGENY; GRANITOIDS;
D O I
10.1016/j.oregeorev.2016.01.003
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Xiaguan Ag-Pb-Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250-320 degrees C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+-Cl--type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280-320 MPa in the early mineralization stage to ca. 90-92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag-Pb-Zn orefield belongs to orogenic-type systems. The delta O-18(H2O) values change from the Early (E)-stage (7.8-10.8 parts per thousand), through Middle (M)-stage (6.0-9.4 parts per thousand) to Late (L)-stage (-1.5-3.3 parts per thousand), with delta D values changing from E-stage -95 to -46 parts per thousand, through M-stage -82 to - 70 parts per thousand to L-stage -95 to - 82 parts per thousand. d13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 parts per thousand and 0.9 parts per thousand (average: 0.3 parts per thousand ); delta O-18(H2O) values of L-stage FIs are -0.2-0.1 parts per thousand in quartz and -6.8 parts per thousand to - 3.5 parts per thousand in calcite. The H-O-C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution. Sulfur (delta S-34 = 1.9-8.1 parts per thousand) and lead isotopic compositions (Pb-206/Pb-204 = 18.202-18.446, Pb-207/Pb-204 = 15.567-15.773 and Pb-208/Pb-204 = 38.491-39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187 - 124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag-Pb-Zn orefield was formed in a continent-continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF). (C) 2016 Elsevier B.V. All rights reserved. The Xiaguan Ag-Pb-Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250-320 degrees C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+-Cl--type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280-320 MPa in the early mineralization stage to ca. 90-92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag-Pb-Zn orefield belongs to orogenic-type systems. The delta O-18(H2O) values change from the Early (E)-stage (7.8-10.8 parts per thousand), through Middle (M)-stage (6.0-9.4 parts per thousand) to Late (L)-stage (-1.5-3.3 parts per thousand), with delta D values changing from E-stage -95 to -46 parts per thousand, through M-stage -82 to - 70 parts per thousand to L-stage -95 to - 82 parts per thousand. d13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 parts per thousand and 0.9 parts per thousand (average: 0.3 parts per thousand ); delta O-18(H2O) values of L-stage FIs are -0.2-0.1 parts per thousand in quartz and -6.8 parts per thousand to - 3.5 parts per thousand in calcite. The H-O-C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution. Sulfur (delta S-34 = 1.9-8.1 parts per thousand) and lead isotopic compositions (Pb-206/Pb-204 = 18.202-18.446, Pb-207/Pb-204 = 15.567-15.773 and Pb-208/Pb-204 = 38.491-39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187 - 124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag-Pb-Zn orefield was formed in a continent-continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF). (C) 2016 Elsevier B.V. All rights reserved. The Xiaguan Ag-Pb-Zn orefield (Neixiang County, Henan Province), hosting the Yindonggou, Zhouzhuang, Yinhulugou and Laozhuang fault-controlled lode deposits, is situated in the Erlangping Terrane, eastern Qinling Orogen. The quartz-sulfide vein mineralization is dominated by main alteration styles of silicic-, sericite-, carbonate-, chlorite- and sulfide alteration. Major Ag-bearing minerals are freibergite, argentite and native Ag. The deposits were formed by a CO2-rich, mesothermal (ca. 250-320 degrees C), low-density and low salinity (< 11 wt.% NaCl equiv.), Na+-Cl--type fluid system. Trapping pressures of the carbonic-type fluid inclusions (FIs) decreased from ca. 280-320 MPa in the early mineralization stage to ca. 90-92 MPa in the late mineralization stage, indicating that the ore-forming depths had become progressively shallower. This further suggests that the metallogenesis may have occurred in a tectonic transition from compression to extension. Geological- and ore fluid characteristics suggest that the Xiaguan Ag-Pb-Zn orefield belongs to orogenic-type systems. The delta O-18(H2O) values change from the Early (E)-stage (7.8-10.8 parts per thousand), through Middle (M)-stage (6.0-9.4 parts per thousand) to Late (L)-stage (-1.5-3.3 parts per thousand), with delta D values changing from E-stage -95 to -46 parts per thousand, through M-stage -82 to - 70 parts per thousand to L-stage -95 to - 82 parts per thousand. d13CCO2 values of the ore fluids in the E- and M-stage quartz vary between 0.1 parts per thousand and 0.9 parts per thousand (average: 0.3 parts per thousand ); delta O-18(H2O) values of L-stage FIs are -0.2-0.1 parts per thousand in quartz and -6.8 parts per thousand to - 3.5 parts per thousand in calcite. The H-O-C isotopic data indicate that the initial ore fluids were sourced from the underthrusted Qinling Group marine carbonates, and were then interacted with the ore-hosting Erlangping Group metasedimentary rocks. Inflow of circulated meteoric water may have dominated the L-stage fluid evolution. Sulfur (delta S-34 = 1.9-8.1 parts per thousand) and lead isotopic compositions (Pb-206/Pb-204 = 18.202-18.446, Pb-207/Pb-204 = 15.567-15.773 and Pb-208/Pb-204 = 38.491-39.089) of sulfides suggest that the ore-forming materials were mainly sourced from the ore-hosting metasedimentary strata. The stepped heating sericite 40Ar/39Ar detection suggests that the mineralization occurred in the Middle Jurassic to Early Cretaceous (ca. 187 - 124 Ma). Considering the regional tectonic evolution of the Erlangping Terrane, we propose that the Xiaguan Ag-Pb-Zn orefield was formed in a continent-continent collisional tectonic regime, in accordance with the tectonic model for continental collision, metallogeny and fluid flow (CMF). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [41] Fluid inclusion, H-O, S, Pb and noble gas isotope studies of the Aerhada Pb-Zn-Ag deposit, Inner Mongolia, NE China
    Zhang, Hongyu
    Zhai, Degao
    Liu, Jiajun
    MINERAL RESOURCES TO DISCOVER, VOLS 1-4, 2017, : 1383 - 1386
  • [42] Mineralogy, fluid inclusions and S-Pb-H-O isotopes of the Erdaokan Ag-Pb-Zn deposit, Duobaoshan metallogenic belt, NE China: Implications for ore genesis
    Yuan, Mao-Wen
    Li, Lin
    Li, Sheng-Rong
    Li, Cheng-Lu
    Santosh, M.
    Alam, Masroor
    Bao, Xi-Bo
    ORE GEOLOGY REVIEWS, 2019, 113
  • [43] Fluid Inclusion, H-O, S, Pb and noble gas isotope studies of the Aerhada Pb-Zn-Ag deposit, Inner Mongolia, NE China
    Ke, Liangliang
    Zhang, Hongyu
    Liu, Jiajun
    Zhai, Degao
    Guo, Donghang
    Yang, Jiekun
    Tan, Qiang
    Xu, Yongwang
    Zhang, Mei
    Wang, Shouguang
    ORE GEOLOGY REVIEWS, 2017, 88 : 304 - 316
  • [44] Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence
    Zhai, De-Gao
    Liu, Jia-Jun
    Wang, Jian-Ping
    Yao, Mei-Juan
    Wu, Sheng-Hua
    Fu, Chao
    Liu, Zhen-Jiang
    Wang, Shou-Guang
    Li, Yu-Xi
    INTERNATIONAL GEOLOGY REVIEW, 2013, 55 (02) : 204 - 224
  • [45] Genesis of the Longtougou gold deposit, South Qinling Orogen, China: Constraints from ore geology, trace element, and S-Pb-H-O isotopes
    Li, Bei
    Zhu, Laimin
    Xiong, Xiao
    Ding, Lele
    Ma, Yuanbo
    ORE GEOLOGY REVIEWS, 2022, 149
  • [46] Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China
    Zhu, Xiao-Ting
    Ni, Pei
    Wang, Guo-Guang
    Cai, Yi-Tao
    Chen, Hui
    Pan, Jun-Yi
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2016, 171 : 55 - 70
  • [47] Genesis and evolution of the Leimengou porphyry Mo deposit in West Henan Province, East Qinling-Dabie belt, China: Constraints from hydrothermal alteration, fluid inclusions and stable isotope data
    Chen, Xiaodan
    Ye, Huishou
    Wang, Huan
    JOURNAL OF ASIAN EARTH SCIENCES, 2014, 79 : 710 - 722
  • [48] Genesis of the Xiaotongjiapuzi gold deposit of the Liaodong gold province, Northeast China: Fluid inclusion thermometry and S-Pb-H-O-He isotope constraints
    Liu, Jun
    Liu, Fu-Xing
    Li, Sheng-Hui
    Lai, Chun-Kit
    GEOLOGICAL JOURNAL, 2020, 55 (01) : 1023 - 1040
  • [49] Pb-Sr-Nd isotope constraints on the fluid source of the Dahu Au-Mo deposit in Qinling Orogen, central China, and implication for Triassic tectonic setting
    Ni, Zhi-Yong
    Chen, Yan-Jing
    Li, Nuo
    Zhang, Hui
    ORE GEOLOGY REVIEWS, 2012, 46 : 60 - 67
  • [50] Geology, fluid inclusion, and stable isotope systematics of the Dongyang epithermal gold deposit, Fujian Province, southeast China: Implications for ore genesis and mineral exploration
    Li, Su-Ning
    Ni, Pei
    Bao, Tan
    Li, Chang-Ze
    Xiang, Hong-Liang
    Wang, Guo-Guang
    Huang, Bao
    Chi, Zhe
    Dai, Bao-Zhang
    Ding, Jun-Ying
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2018, 195 : 16 - 30