Logic devices based on nucleic acid self-assembly

被引:10
作者
Xu, Xuehui [1 ]
Shang, Yingxu [1 ]
Liu, Fengsong [1 ,2 ]
Jiang, Qiao [1 ,2 ]
Ding, Baoquan [1 ,2 ,3 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, 11 BeiYiTiao, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Zhengzhou Univ, Henan Inst Adv Technol, Sch Mat Sci & Engn, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
biosensing; logic devices; nucleic acids; self-assembly; LATERAL FLOW BIOSENSOR; DNA ORIGAMI; INFORMATION-STORAGE; COMPUTATION; GATES; CIRCUITS; OLIGONUCLEOTIDE; NANOSTRUCTURES; MOLECULES; SELECTION;
D O I
10.1002/inf2.12240
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nucleic acids are natural macromolecules with the ability to store and transmit information based on the strict base-pairing principle. Beyond the natural nucleic acid double helixes, various DNA/RNA nanostructures with customized geometries and functionalities have been fabricated. Featured with programmability and sequence-dependent responsiveness, DNA/RNA nanostructures have been employed for the rational design and construction of logic devices. When stimulated by internal molecular triggers and/or external stimuli, these logic gate devices can operate at nanoscale level in complex biological environments, performing logic operations and producing corresponding outputs. In this minireview, we summarize the recent advances of nucleic acid logic devices, which are responsive to various stimuli, including DNA/RNA strands, metal ions, small molecules, peptides, proteins, photo-irradiation, pH changes, and so forth. The applications of these devices in biosensing and biofunction regulation are also included. In the last part of the present study, we discuss the remaining challenges and perspectives of nucleic acid logic devices.
引用
收藏
页码:1070 / 1082
页数:13
相关论文
共 117 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
[3]   Chemistry meets computing [J].
Ball, P .
NATURE, 2000, 406 (6792) :118-120
[4]   DNA nanotubes for NMR structure determination of membrane proteins [J].
Bellot, Gaetan ;
McClintock, Mark A. ;
Chou, James J. ;
Shih, William M. .
NATURE PROTOCOLS, 2013, 8 (04) :755-770
[5]   Optically Induced Molecular Logic Operations [J].
Bi, Hai ;
Lobet, Michael ;
Saikin, Semion K. ;
Li, Yang ;
Huo, Chanyuan ;
Jian, Jiahuang ;
Wu, Xiaohong ;
Reichert, Joachim ;
Aspuru-Guzik, Alan ;
Mazur, Eric .
ACS NANO, 2020, 14 (11) :15248-15255
[6]   Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations [J].
Bi, Sai ;
Ji, Bin ;
Zhang, Zhipeng ;
Zhu, Jun-Jie .
CHEMICAL SCIENCE, 2013, 4 (04) :1858-1863
[7]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[8]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[9]  
Breaker R R, 1994, Chem Biol, V1, P223, DOI 10.1016/1074-5521(94)90014-0
[10]   Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors [J].
Buhlmann, P ;
Pretsch, E ;
Bakker, E .
CHEMICAL REVIEWS, 1998, 98 (04) :1593-1687