Improved Semi-Supervised Learning with Multiple Graphs

被引:0
|
作者
Viswanathan, Krishnamurthy [1 ]
Sachdeva, Sushant [2 ]
Tomkins, Andrew [1 ]
Ravi, Sujith [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Univ Toronto, Toronto, ON, Canada
来源
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89 | 2019年 / 89卷
基金
加拿大自然科学与工程研究理事会;
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new approach for graph based semi-supervised learning based on a multicomponent extension to the Gaussian MRF model. This approach models the observations on the vertices as jointly Gaussian with an inverse covariance matrix that is a weighted linear combination of multiple matrices. Building on randomized matrix trace estimation and fast Laplacian solvers, we develop fast and efficient algorithms for computing the best-fit (maximum likelihood) model and the predicted labels using gradient descent. Our model is considerably simpler, with just tens of parameters, and a single hyperparameter, in contrast with state-of-the-art approaches using deep learning techniques. Our experiments on benchmark citation networks show that the best-fit model estimated by our algorithm leads to significant improvements on all datasets compared to baseline models. Further, our performance compares favorably with several state-of-the-art methods on these datasets, and is comparable with the best performances.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Robust Semi-Supervised Learning on Multiple Networks with Noise
    Ye, Junting
    Akoglu, Leman
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 196 - 208
  • [2] COSNet: A Cost Sensitive Neural Network for Semi-supervised Learning in Graphs
    Bertoni, Alberto
    Frasca, Marco
    Valentini, Giorgio
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2011, 6911 : 219 - 234
  • [3] Improved Generalization in Semi-Supervised Learning: A Survey of Theoretical Results
    Mey, Alexander
    Loog, Marco
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4747 - 4767
  • [4] Semi-supervised Learning with Transfer Learning
    Zhou, Huiwei
    Zhang, Yan
    Huang, Degen
    Li, Lishuang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, 2013, 8208 : 109 - 119
  • [5] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [6] Semi-supervised learning by disagreement
    Zhou, Zhi-Hua
    Li, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 415 - 439
  • [7] Human Semi-Supervised Learning
    Gibson, Bryan R.
    Rogers, Timothy T.
    Zhu, Xiaojin
    TOPICS IN COGNITIVE SCIENCE, 2013, 5 (01) : 132 - 172
  • [8] A survey on semi-supervised learning
    Van Engelen, Jesper E.
    Hoos, Holger H.
    MACHINE LEARNING, 2020, 109 (02) : 373 - 440
  • [9] Posterior consistency of semi-supervised regression on graphs
    Bertozzi, Andrea L.
    Hosseini, Bamdad
    Li, Hao
    Miller, Kevin
    Stuart, Andrew M.
    INVERSE PROBLEMS, 2021, 37 (10)
  • [10] Semi-supervised regression using diffusion on graphs
    Timilsina, Mohan
    Figueroa, Alejandro
    d'Aquin, Mathieu
    Yang, Haixuan
    APPLIED SOFT COMPUTING, 2021, 104