High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration

被引:44
作者
Casanova, Serena [1 ,2 ]
Liu, Tian-Yin [3 ]
Chew, Yong-Min J. [1 ,2 ]
Livingston, Andrew [3 ,4 ]
Mattia, Davide [1 ,2 ]
机构
[1] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[2] Univ Bath, Ctr Adv Separat Engn, Bath BA2 7AY, Avon, England
[3] Imperial Coll London, Dept Chem Engn, South Kensington Campus, London SW7 2AZ, England
[4] Queen Mary Univ London, Dept Engn & Mat Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
Boron nitride nanotubes; Chemical vapour deposition; Interfacial polymerisation; Nanofiltration; POLYSULFONE ULTRAFILTRATION MEMBRANE; REVERSE-OSMOSIS MEMBRANE; CARBON NANOTUBES; INTERFACIAL POLYMERIZATION; WATER; PERFORMANCE; NANOPARTICLES; FABRICATION; ENERGY; FUTURE;
D O I
10.1016/j.memsci.2019.117749
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel thin film nanocomposite (TFN) membrane was obtained by incorporating boron nitride nanotubes (BNNTs) into a polyamide (PA) thin selective layer prepared via interfacial polymerisation. The addition of just 0.02 wt% of BNNTs led to a 4-fold increase in pure water permeance with no loss in rejection for divalent salts, methylene blue or humic acid compared to the pure PA membrane. Loadings higher than 0.02 wt% of BNNTs led to agglomeration with overall loss of performance. For the membranes containing 0.02 wt% BNNTs, the pure water permeance was 4.5 LMH@bar, with >90% rejection of MgSO4 and >80% rejection of CaCl2. Fouling tests with humic acid showed a flux recovery ratio of >95% with similar to 50% lower flux loss during the fouling cycle compared to the polyamide only membrane. These values represent a significant improvement over both commercial polyamide membranes and TFN membranes incorporating carbon nanotubes. We assert that the very small quantity of BNNTs needed to produce the enhanced performance opens the way to their use in water treatment applications where nanofiltration membranes are subject to severe organic fouling.
引用
收藏
页数:11
相关论文
共 65 条
[1]  
[Anonymous], SCI TOTAL ENV
[2]   Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment [J].
Baghbanzadeh, Mohammadali ;
Rana, Dipak ;
Lan, Christopher Q. ;
Matsuura, Takeshi .
SEPARATION AND PURIFICATION REVIEWS, 2016, 45 (02) :141-167
[3]   Single-file transport of water molecules through a carbon nanotube [J].
Berezhkovskii, A ;
Hummer, G .
PHYSICAL REVIEW LETTERS, 2002, 89 (06) :064503/1-064503/4
[4]   Surface-Controlled Water Flow in Nanotube Membranes [J].
Casanova, Serena ;
Borg, Matthew K. ;
Chew, Y. M. John ;
Mattia, Davide .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :1689-1698
[5]   Double-helix structure in multiwall boron nitride nanotubes [J].
Celik-Aktas, A ;
Zuo, JM ;
Stubbins, JF ;
Tang, CC ;
Bando, Y .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 :533-541
[6]   Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination [J].
Chan, Wai-Fong ;
Chen, Hang-yan ;
Surapathi, Anil ;
Taylor, Michael G. ;
Shao, Xiaohong ;
Marand, Eva ;
Johnson, J. Karl .
ACS NANO, 2013, 7 (06) :5308-5319
[7]   Cubic boron nitride with an intrinsic peroxidase-like activity [J].
Chen, T. M. ;
Xiao, J. ;
Yang, G. W. .
RSC ADVANCES, 2016, 6 (74) :70124-70132
[8]   Suspension properties of hexagonal BN powders: effect of pH and oxygen content [J].
Crimp, MJ ;
Oppermann, DA ;
Krehbiel, K .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (11) :2621-2625
[9]   Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water [J].
Daraei, Parisa ;
Madaeni, Sayed Siavash ;
Ghaemi, Negin ;
Salehi, Ehsan ;
Khadivi, Mohammad Ali ;
Moradian, Rostam ;
Astinchap, Bandar .
JOURNAL OF MEMBRANE SCIENCE, 2012, 415 :250-259
[10]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717