Conservation laws of scaling-invariant field equations

被引:41
作者
Anco, SC [1 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 32期
关键词
D O I
10.1088/0305-4470/36/32/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A simple conservation law formula for field equations with a scaling symmetry is presented. The formula uses adjoint-symmetries of the given field equation and directly generates all local conservation laws for any conserved quantities having non-zero scaling weight. Applications to several soliton equations, fluid flow and nonlinear wave equations, Yang-Mills equations and the Einstein gravitational field equations are considered.
引用
收藏
页码:8623 / 8638
页数:16
相关论文
共 26 条
[1]  
Ablowitz M A., 1991, Solitons, nonlinear evolution equations and inverse scattering, DOI [10.1017/CBO9780511623998, DOI 10.1017/CBO9780511623998]
[2]   Derivation of conservation laws from nonlocal symmetries of differential equations [J].
Anco, SC ;
Bluman, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2361-2375
[3]   Classification of local conservation laws of Maxwell's equations [J].
Anco, SC ;
Pohjanpelto, J .
ACTA APPLICANDAE MATHEMATICAE, 2001, 69 (03) :285-327
[4]   Conserved currents of massless fields of spin s≥1/2 [J].
Anco, SC ;
Pohjanpelto, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2033) :1215-1239
[5]   Direct construction method for conservation laws of partial differential equations - Part I: Examples of conservation law classifications [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :545-566
[6]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[7]   Direct construction of conservation laws from field equations [J].
Anco, SC ;
Bluman, G .
PHYSICAL REVIEW LETTERS, 1997, 78 (15) :2869-2873
[8]  
ANCO SC, 1992, CONT MATH, V132, P27
[9]   Classification of local generalized symmetries for the vacuum Einstein equations [J].
Anderson, IM ;
Torre, CG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (03) :479-539
[10]  
Bluman G. W., 2002, Symmetry and Integration Methods for Differential Equations