Gevrey Regularity of Invariant Curves of Analytic Reversible Mappings

被引:1
|
作者
Zhang, Dongfeng [1 ]
Cheng, Rong [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
NON-DEGENERACY CONDITION; INTEGRABLE HAMILTONIAN-SYSTEMS; EXTENSION THEOREM; TORI; SMOOTHNESS; STABILITY; TWIST;
D O I
10.1155/2010/324378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a Gevrey family of invariant curves for analytic reversible mappings under weaker nondegeneracy condition. The index of the Gevrey smoothness of the family could be any number mu > tau + 2, where tau > m - 1 is the exponent in the small divisors condition and m is the order of degeneracy of the reversible mappings. Moreover, we obtain a Gevrey normal form of the reversible mappings in a neighborhood of the union of the invariant curves.
引用
收藏
页数:18
相关论文
共 50 条