Category-Level Metric Scale Object Shape and Pose Estimation

被引:30
|
作者
Lee, Taeyeop [1 ]
Lee, Byeong-Uk [1 ]
Kim, Myungchul [1 ]
Kweon, I. S. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Robot & Comp Vis Lab, Daejeon 35200, South Korea
关键词
Robot manipulation; augmented reality; object shape estimation; object pose estimation;
D O I
10.1109/LRA.2021.3110538
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Advances in deep learning recognition have led to accurate object detection with 2D images. However, these 2D perception methods are insufficient for complete 3D world information. Concurrently, advanced 3D shape estimation approaches focus on the shape itself, without considering metric scale. These methods cannot determine the accurate location and orientation of objects. To tackle this problem, we propose a framework that jointly estimates a metric scale shape and pose from a single RGB image. Our framework has two branches: the Metric Scale Object Shape branch (MSOS) and the Normalized Object Coordinate Space branch (NOCS). The MSOS branch estimates the metric scale shape observed in the camera coordinates. The NOCS branch predicts the normalized object coordinate space (NOCS) map and performs similarity transformation with the rendered depth map from a predicted metric scale mesh to obtain 6D pose and size. Additionally, we introduce the Normalized Object Center Estimation (NOCE) to estimate the geometrically aligned distance from the camera to the object center. We validated our method on both synthetic and real-world datasets to evaluate category-level object pose and shape.
引用
收藏
页码:8575 / 8582
页数:8
相关论文
共 50 条
  • [1] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [2] Category-Level Articulated Object Pose Estimation
    Li, Xiaolong
    Wang, He
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3703 - 3712
  • [3] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [4] Optimal Pose and Shape Estimation for Category-level 3D Object Perception
    Shi, Jingnan
    Yang, Heng
    Carlone, Luca
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [5] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [6] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [7] Generative Category-Level Shape and Pose Estimation with Semantic Primitives
    Li, Guanglin
    Li, Yifeng
    Ye, Zhichao
    Zhang, Qihang
    Kong, Tao
    Cui, Zhaopeng
    Zhang, Guofeng
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1390 - 1400
  • [8] Median-shape Representation Learning for Category-level Object Pose Estimation in Cluttered Environments
    Tatemichi, Hiroki
    Kawanishi, Yasutomo
    Deguchi, Daisuke
    Ide, Ichiro
    Amma, Ayako
    Murase, Hiroshi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4473 - 4480
  • [9] Open-Vocabulary Category-Level Object Pose and Size Estimation
    Cai, Junhao
    He, Yisheng
    Yuan, Weihao
    Zhu, Siyu
    Dong, Zilong
    Bo, Liefeng
    Chen, Qifeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7661 - 7668
  • [10] TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation
    Zhan, Yue
    Wang, Xin
    Nie, Lang
    Zhao, Yang
    Yang, Tangwen
    Ruan, Qiuqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9749 - 9762