Crystalline splitting of d orbitals in two-dimensional regular optical lattices

被引:4
|
作者
Chen, Hua [1 ]
Xie, X. C. [2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[2] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
EXACT SPECTRA; QUANTUM; ORDER; SUPERCONDUCTIVITY; DYNAMICS; PHYSICS; MODELS;
D O I
10.1103/PhysRevA.98.053611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In solids, crystal field splitting refers to the lifting of atomic orbital degeneracy by the surrounding ions through the static electric field Similarly, we show that the degenerated d orbitals, which were derived in the harmonic oscillator approximation, are split into a low-lying d(x2+y2) singlet and a d(x2-y2/xy) doublet by the highorder Taylor polynomials of triangular optical potential. The low-energy effective theory of the orbital Mott insulator at 2/3 filling is generically described by the Heisenberg-compass model, where the antiferro-orbital exchange interactions of compass type depend on the bond orientation and are geometrically frustrated in the triangular lattice. While, for the square optical lattice, the degenerated d orbitals are split into a different multiplet structure, i.e., a low-lying d(x2 +/- y2) doublet and a d(xy) singlet, which has its physical origin in the C-4v point group symmetry of square optical potential. Our results build a bridge between ultracold atom systems and solid-state systems for the investigation of d-orbital physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Stability of solitons in time-modulated two-dimensional lattices
    Dror, Nir
    Malomed, Boris A.
    NONLINEAR DYNAMICS, 2018, 91 (03) : 1733 - 1753
  • [22] Vortex dynamics and frustration in two-dimensional triangular chromium lattices
    Hemmida, M.
    von Nidda, H. -A. Krug
    Buettgen, N.
    Loidl, A.
    Alexander, L. K.
    Nath, R.
    Mahajan, A. V.
    Berger, R. F.
    Cava, R. J.
    Singh, Yogesh
    Johnston, D. C.
    PHYSICAL REVIEW B, 2009, 80 (05):
  • [23] Solitons in binary compounds with stacked two-dimensional honeycomb lattices
    Muten, James H.
    Frankland, Louise H.
    Mccann, Edward
    PHYSICAL REVIEW B, 2024, 109 (16)
  • [24] Finite-momentum Bose-Einstein condensates in shaken two-dimensional square optical lattices
    Di Liberto, M.
    Tieleman, O.
    Branchina, V.
    Smith, C. Morais
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [25] Mobile impurities and orthogonality catastrophe in two-dimensional vortex lattices
    Caracanhas, M. A.
    Pereira, R. G.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [26] Autowave structures in two-dimensional lattices of nonlocally coupled oscillators
    Bukh, A., V
    Rybalova, E., V
    Anishchenko, V. S.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2020, 28 (03): : 299 - 323
  • [27] Two-component Bose-Einstein condensates in D-dimensional optical lattices
    Wang, Jian-Jun
    Zhang, Ai-Xia
    Zhang, Ke-Zhi
    Ma, Juan
    Xue, Ju-Kui
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [28] Melting of two-dimensional perfect crystalline and polycrystalline germanene
    Nguyen Hoang Giang
    Vo Van Hoang
    Tran Thi Thu Hanh
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119
  • [29] Prediction of a two-dimensional crystalline structure of nitrogen atoms
    Ozcelik, V. Ongun
    Akturk, O. Uzengi
    Durgun, E.
    Ciraci, S.
    PHYSICAL REVIEW B, 2015, 92 (12)
  • [30] Elastic properties of moir? lattices in epitaxial two-dimensional materials
    Artaud, Alexandre
    Rougemaille, Nicolas
    Vlaic, Sergio
    Renard, Vincent T.
    Atodiresei, Nicolae
    Coraux, Johann
    PHYSICAL REVIEW B, 2022, 106 (20)