Non-negative Matrix Factorization under Heavy Noise

被引:0
|
作者
Bhattacharya, Chiranjib [1 ]
Goyal, Navin [2 ]
Kannan, Ravindran [2 ]
Pani, Jagdeep [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore, Karnataka, India
[2] Microsoft Res India, Bangalore, Karnataka, India
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Noisy Non-negative Matrix factorization (NMF) is: given a data matrix A (d x n), find non-negative matrices B;C (d x k, k x n respy.) so that A = BC + N, where N is a noise matrix. Existing polynomial time algorithms with proven error guarantees require each column N-x;j to have l(1) norm much smaller than parallel to(BC)(x;j)parallel to(1), which could be very restrictive. In important applications of NMF such as Topic Modeling as well as theoretical noise models (eg. Gaussian with high sigma), almost every column of N-xj violates this condition. We introduce the heavy noise model which only requires the average noise over large subsets of columns to be small. We initiate a study of Noisy NMF under the heavy noise model. We show that our noise model subsumes noise models of theoretical and practical interest (for eg. Gaussian noise of maximum possible sigma). We then devise an algorithm TSVDNMF which under certain assumptions on B;C, solves the problem under heavy noise. Our error guarantees match those of previous algorithms. Our running time of O ((n + d)(2)k) is substantially better than the O(n(3)d) for the previous best. Our assumption on B is weaker than the "Separability" assumption made by all previous results. We provide empirical justification for our assumptions on C. We also provide the first proof of identifiability (uniqueness of B) for noisy NMF which is not based on separability and does not use hard to check geometric conditions. Our algorithm outperforms earlier polynomial time algorithms both in time and error, particularly in the presence of high noise.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Rank selection for non-negative matrix factorization
    Cai, Yun
    Gu, Hong
    Kenney, Toby
    STATISTICS IN MEDICINE, 2023, 42 (30) : 5676 - 5693
  • [22] FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION
    Babaee, Mohammadreza
    Bahmanyar, Reza
    Rigoll, Gerhard
    Datcu, Mihai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3023 - 3027
  • [23] Multiobjective Sparse Non-Negative Matrix Factorization
    Gong, Maoguo
    Jiang, Xiangming
    Li, Hao
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (08) : 2941 - 2954
  • [24] Optimization and expansion of non-negative matrix factorization
    Xihui Lin
    Paul C. Boutros
    BMC Bioinformatics, 21
  • [25] Novel Algorithm for Non-Negative Matrix Factorization
    Tran Dang Hien
    Do Van Tuan
    Pham Van At
    Le Hung Son
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) : 121 - 133
  • [26] Discriminant Projective Non-Negative Matrix Factorization
    Guan, Naiyang
    Zhang, Xiang
    Luo, Zhigang
    Tao, Dacheng
    Yang, Xuejun
    PLOS ONE, 2013, 8 (12):
  • [27] Enforced Sparse Non-Negative Matrix Factorization
    Gavin, Brendan
    Gadepally, Vijay
    Kepner, Jeremy
    2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, : 902 - 911
  • [28] Swarm Intelligence for Non-Negative Matrix Factorization
    Janecek, Andreas
    Tan, Ying
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (04) : 12 - 34
  • [29] Optimization and expansion of non-negative matrix factorization
    Lin, Xihui
    Boutros, Paul C.
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [30] Non-negative matrix factorization for face recognition
    Guillamet, D
    Vitriá, J
    TOPICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2504 : 336 - 344